Infant Cry Detection and Pain Scale Assessment

2014 ◽  
Vol 3 (1) ◽  
pp. 42-51 ◽  
Author(s):  
N. Sriraam ◽  
S. Tejaswini

A biological alarm system that connects mother and new born is referred as infant cry. Infant cry is a first means of communication through which mother understands the level of distress/ needs. Infant cry can be considered a multimodal behavior which involves limb movements, facial expressions which changes over time to identify the needs of an infant. The cry of the baby cannot be predicted accurately and it is hard to identify for what it cries for. The infant's cry is mainly a vocal signal which is a way of communication that aims to get attention of the listener to a physical state like hunger, pain, discomfort, fear, illness, wet diaper etc., .Pain is one of the most common symptoms experienced world over. Pain is an unpleasant feeling that is conveyed to the brain by sensory neurons. The discomfort signals actual or potential injury to the body. This pilot study gives an insight on the current state of works in infant cry analysis and pain scale assessment and also concludes with thoughts about the future directions for better representation and interpretation of infant cry signals.

The main events and circumstances of human evolution are considered: classification of hominids, first descriptions, localization, chronology; artifacts characterizing their material and cultural activities; modern reconstruction of lifestyle and resettlement; and modern theories explaining the structural features of hominids and the processes of their occurrence. The manifestations of intelligent activity are discussed, in particular, their dependence from the structure of the body, the size, and complexity of the brain, for which comparisons with various animals are made. Particular attention is paid to unresolved or controversial issues. This material is necessary to assess the possibilities of the self-organization of complex systems theory (second chapter): if it adequately models the characteristics of a human's origin, then it can be used to understand the evolution of human mind and in the subsequent period, up to the current state.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Santosh Chandrasekaran ◽  
Matthew Fifer ◽  
Stephan Bickel ◽  
Luke Osborn ◽  
Jose Herrero ◽  
...  

AbstractAlmost 100 years ago experiments involving electrically stimulating and recording from the brain and the body launched new discoveries and debates on how electricity, movement, and thoughts are related. Decades later the development of brain-computer interface technology began, which now targets a wide range of applications. Potential uses include augmentative communication for locked-in patients and restoring sensorimotor function in those who are battling disease or have suffered traumatic injury. Technical and surgical challenges still surround the development of brain-computer technology, however, before it can be widely deployed. In this review we explore these challenges, historical perspectives, and the remarkable achievements of clinical study participants who have bravely forged new paths for future beneficiaries.


2009 ◽  
Vol 1 (4) ◽  
pp. 355-368 ◽  
Author(s):  
Tim Dalgleish ◽  
Barnaby D. Dunn ◽  
Dean Mobbs

The discipline of affective neuroscience is concerned with the underlying neural substrates of emotion and mood. This review presents an historical overview of the pioneering work in affective neuroscience of James and Lange, Cannon and Bard, and Hess, Papez, and MacLean before summarizing the current state of research on the brain regions identified by these seminal researchers. We also discuss the more recent strides made in the field of affective neuroscience. A final section considers different hypothetical organizations of affective neuroanatomy and highlights future directions for the discipline.


2020 ◽  
Author(s):  
Nikolay Raychev ◽  

This article discusses the current state of neurointerface technologies, not limited to deep electrode approaches. There are new heuristic ideas for creating a fast and broadband channel from the brain to artificial intelligence. One of the ideas is not to decipher the natural codes of nerve cells, but to create conditions for the development of a new language for communication between the human brain and artificial intelligence tools. Theoretically, this is possible if the brain "feels" that by changing the activity of nerve cells that communicate with the computer, it is possible to "achieve" the necessary actions for the body in the external environment, for example, to take a cup of coffee or turn on your favorite music. At the same time, an artificial neural network that analyzes the flow of nerve impulses must also be directed at the brain, trying to guess the body's needs at the moment with a minimum number of movements. The most important obstacle to further progress is the problem of biocompatibility, which has not yet been resolved. This is even more important than the number of electrodes and the power of the processors on the chip. When you insert a foreign object into your brain, it tries to isolate itself from it. This is a multidisciplinary topic not only for doctors and psychophysiologists, but also for engineers, programmers, mathematicians. Of course, the problem is complex and it will be possible to overcome it only with joint efforts.


2016 ◽  
Vol 1 (2) ◽  

Pain is an unpleasant feeling, produced by the brain indicating damage or potential injury to the body. The assessment of a patient’s experience with pain is a crucial component in providing effective pain management. Accordingly, effective pain management ought to include ways to reduce pain, increase comfort, improve physiological, psychological and physical function and increase most importantly increase satisfaction with pain management. In return this comprehensive pain assessment should not only allow for the healthcare professionals to describe the pain, make evaluate and make decisions about the pain, but also it could perhaps produce positive outcomes for the patient. Pain is subjective and thus only the patient can really know what he or she is feeling. In health care there are ways to go about assessing a patient’s pain including self-report assessment and asking the patient information about his/her pain. However, the question is which way of exploring and assessing maybe more suited and is more effective for pain management. This paper examines the reliability of several widely used methods to assess patient’s pain for healthcare practitioners and to determine which method is more suited and useful.


2017 ◽  
Vol 118 (4) ◽  
pp. 2110-2131 ◽  
Author(s):  
Guy Avraham ◽  
Firas Mawase ◽  
Amir Karniel ◽  
Lior Shmuelof ◽  
Opher Donchin ◽  
...  

To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the delayed information.


2020 ◽  
Vol 100 (3) ◽  
pp. 1291-1346 ◽  
Author(s):  
Thor W. R. Hansen ◽  
Ronald J. Wong ◽  
David K. Stevenson

Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhilan Liu ◽  
Cui Yang ◽  
Xiaoming Wang ◽  
Yang Xiang

Ischemic stroke (IS) is the second leading cause of death worldwide. Multimodal neuroimaging techniques that have significantly facilitated the diagnosis of hyperacute IS are not widely used in underdeveloped areas and community hospitals owing to drawbacks such as high cost and lack of trained operators. Moreover, these methods do not have sufficient resolution to detect changes in the brain at the cellular and molecular levels after IS onset. In contrast, blood-based biomarkers can reflect molecular and biochemical alterations in both normal and pathophysiologic processes including angiogenesis, metabolism, inflammation, oxidative stress, coagulation, thrombosis, glial activation, and neuronal and vascular injury, and can thus provide information complementary to findings from routine examinations and neuroimaging that is useful for diagnosis. In this review, we summarize the current state of knowledge on blood-based biomarkers of hyperacute IS including those associated with neuronal injury, glial activation, inflammation and oxidative stress, vascular injury and angiogenesis, coagulation and thrombosis, and metabolism as well as genetic and genomic biomarkers. Meanwhile, the blood sampling time of the biomarkers which are cited and summarized in the review is within 6 h after the onset of IS. Additionally, we also discuss the diagnostic and prognostic value of blood-based biomarkers in stroke patients, and future directions for their clinical application and development.


2018 ◽  
Vol 58 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Péter Bucsky

Abstract The freight transport sector is a low profit and high competition business and therefore has less ability to invest in research and development in the field of autonomous vehicles (AV) than the private car industry. There are already different levels of automation technologies in the transport industry, but most of these are serving niche demands and answers have yet to be found about whether it would be worthwhile to industrialise these technologies. New innovations from different fields are constantly changing the freight traffic industry but these are less disruptive than on other markets. The aim of this article is to show the current state of development of freight traffic with regards to AVs and analyse which future directions of development might be viable. The level of automation is very different in the case of different transport modes and most probably the technology will favour road transport over other, less environmentally harmful traffic modes.


Sign in / Sign up

Export Citation Format

Share Document