scholarly journals Molecular Physiology and Pathophysiology of Bilirubin Handling by the Blood, Liver, Intestine, and Brain in the Newborn

2020 ◽  
Vol 100 (3) ◽  
pp. 1291-1346 ◽  
Author(s):  
Thor W. R. Hansen ◽  
Ronald J. Wong ◽  
David K. Stevenson

Bilirubin is the end product of heme catabolism formed during a process that involves oxidation-reduction reactions and conserves iron body stores. Unconjugated hyperbilirubinemia is common in newborn infants, but rare later in life. The basic physiology of bilirubin metabolism, such as production, transport, and excretion, has been well described. However, in the neonate, numerous variables related to nutrition, ethnicity, and genetic variants at several metabolic steps may be superimposed on the normal physiological hyperbilirubinemia that occurs in the first week of life and results in bilirubin levels that may be toxic to the brain. Bilirubin exists in several isomeric forms that differ in their polarities and is considered a physiologically important antioxidant. Here we review the chemistry of the bilirubin molecule and its metabolism in the body with a particular focus on the processes that impact the newborn infant, and how differences relative to older children and adults contribute to the risk of developing both acute and long-term neurological sequelae in the newborn infant. The final section deals with the interplay between the brain and bilirubin and its entry, clearance, and accumulation. We conclude with a discussion of the current state of knowledge regarding the mechanism(s) of bilirubin neurotoxicity.

PEDIATRICS ◽  
1952 ◽  
Vol 9 (5) ◽  
pp. 534-543
Author(s):  
LYTT I. GARDNER

Three cases of newborn tetany are described, pointing out the relationship between dietary phosphate load and the manifestations of this disease. An additional three newborn infants are described who showed other symptomatology than tetany in association with dietary phosphate load. [See Table 1 in Source Pdf]. Data concerning diet, cause of death and degree of parathyroid hyperplasia are tabulated in eight newborns who were found to have parathyroid hyperplasia at autopsy. Similar data are tabulated on eight newborns and five older children who were found to have normal parathyroid glands at autopsy. Several other factors possibly involved in newborn tetany and newborn parathyroid hyperplasia are discussed. The importance of measuring serum inorganic P in the differential diagnosis of neonatal distress is pointed out.


2021 ◽  
pp. 36-44
Author(s):  
Oksana Anatolievna Gizinger ◽  
V. A. Dadali

Modern food products provide no more than 5-6% of the body's need for micronutrients, many of which are antioxidants. The current state of the problem of nutritional deficiency predetermines a chronic long-term deficiency of antioxidants in the diet. Providing the body with balanced polyvalent antioxidant complexes and normalizing its antioxidant status is the basis of health and active longevity.


Author(s):  
Angela Duckworth ◽  

For more than a century, scientists have known that acute stress activates the fight-or-flight response. When your life is on the line, your body reacts instantly: your heart races, your breath quickens, and a cascade of hormones sets off physiological changes that collectively improve your odds of survival. More recently, scientists have come to understand that the fight-or-flight response takes a toll on the brain and the body—particularly when stress is chronic rather than acute. Systems designed to handle transient threats also react to stress that occurs again and again, for weeks, months, or years. It turns out that poverty, abuse, and other forms of adversity repeatedly activate the fight-or-flight response, leading to long-term effects on the immune system and brain, which in turn increase the risk for an array of illnesses, including asthma, diabetes, arthritis, depression, and cardiovascular disease. Pioneering neuroscientist Bruce McEwen called this burden of chronic stress “allostatic load.”


The main events and circumstances of human evolution are considered: classification of hominids, first descriptions, localization, chronology; artifacts characterizing their material and cultural activities; modern reconstruction of lifestyle and resettlement; and modern theories explaining the structural features of hominids and the processes of their occurrence. The manifestations of intelligent activity are discussed, in particular, their dependence from the structure of the body, the size, and complexity of the brain, for which comparisons with various animals are made. Particular attention is paid to unresolved or controversial issues. This material is necessary to assess the possibilities of the self-organization of complex systems theory (second chapter): if it adequately models the characteristics of a human's origin, then it can be used to understand the evolution of human mind and in the subsequent period, up to the current state.


2020 ◽  
Vol 11 ◽  
Author(s):  
Wanghuan Dun ◽  
Tongtong Fan ◽  
Qiming Wang ◽  
Ke Wang ◽  
Jing Yang ◽  
...  

Empathy refers to the ability to understand someone else's emotions and fluctuates with the current state in healthy individuals. However, little is known about the neural network of empathy in clinical populations at different pain states. The current study aimed to examine the effects of long-term pain on empathy-related networks and whether empathy varied at different pain states by studying primary dysmenorrhea (PDM) patients. Multivariate partial least squares was employed in 46 PDM women and 46 healthy controls (HC) during periovulatory, luteal, and menstruation phases. We identified neural networks associated with different aspects of empathy in both groups. Part of the obtained empathy-related network in PDM exhibited a similar activity compared with HC, including the right anterior insula and other regions, whereas others have an opposite activity in PDM, including the inferior frontal gyrus and right inferior parietal lobule. These results indicated an abnormal regulation to empathy in PDM. Furthermore, there was no difference in empathy association patterns in PDM between the pain and pain-free states. This study suggested that long-term pain experience may lead to an abnormal function of the brain network for empathy processing that did not vary with the pain or pain-free state across the menstrual cycle.


1988 ◽  
Vol 65 (1) ◽  
pp. 482-486 ◽  
Author(s):  
K. Shiraki ◽  
S. Sagawa ◽  
F. Tajima ◽  
A. Yokota ◽  
M. Hashimoto ◽  
...  

Temperature within the brain and the esophagus and at the tympanum were obtained in a 12-yr-old male in a series of experiments that began 8 days after surgery for implantation of a drainage catheter. Fanning the face did reduce tympanic temperature but not temperature in the brain; brain temperatures followed esophageal temperatures. In long-term monitoring, temperature in the lateral ventricle was 0.5 degree C above esophageal temperature and 0.2 degree C below that in white matter 1 cm above, with the offsets fixed throughout the overnight cycle. All temperatures went through similar excursions when the face was excluded from fanning applied to the body. These observations highlight the fact that in humans the defense against hyperthermia takes advantage of cooling distributed over the entire skin surface.


Ciencia Unemi ◽  
2018 ◽  
Vol 10 (25) ◽  
pp. 123
Author(s):  
Maria Alejandra Vallejo-Johnson ◽  
Patricia Marcial-Velastegui

Existen diversos estudios que proponen las causas de la Enfermedad de Alzheimer (EA), las cuales pueden ser: biológicas, genéticas, cronológicas y ambientales, dentro de ésta última se encuentra el estrés como una influencia para el inicio de dicha patología. Según las distintas teorías del estrés, el sujeto, al encontrarse frente a una situación estresante, sufre diversos cambios en su cuerpo para sobrellevar dicho acontecimiento. El cerebro es el encargado de poner al cuerpo en alerta y en marcha para actuar frente a dicho cambio. El estrés prolongado conlleva a alteraciones en las vías cerebrales, específicamente un daño neuronal del hipocampo, el cual es el encargado de los recuerdos y memoria. Éste al verse afectado, repercute en la memoria del sujeto y por lo tanto empieza a fallar; el sujeto se ve en la incapacidad para recordar y realizar distintas actividades rutinarias. Mediante la investigación documental y encuestas a profesionales de la salud, se obtuvo información tanto del estrés como de la Enfermedad de Alzheimer para luego concluir en la influencia del mismo en el origen de la enfermedad. Se concluye que el estrés perenne repercute en la muerte de neuronas del hipocampo lo que conlleva a la EA. AbstractThere are different studies that propose that the causes of Alzheimer might be biological, genetic, chronological and environmental. Within the environmental aspects, the stress influences the beginning of this pathology. There are several studies that propose the causes of Alzheimer's disease (AD), which can be: biological, genetic, chronological and environmental, within the latter is the stress that influences the beginning of this pathology. According to different theories of stress, the individual, while facing a stressful situation, experiences many changes in the body in order to deal with this situation. The brain is in charge of alerting the body to protect itself against that change. The long-term stress alters the brain pathways, producing specifically a neuronal damage in the hippocampus that is responsible for memories and memory. This affects memory and therefore individual begins to fail, and then, the person cannot remember how to do the daily routine. Through bibliographical research and surveys applied to healthcare professionals, information was obtained on both stress and Alzheimer's disease to establish the influence of that condition on the disease. The study concludes that long-term stress affects the death of neurons in the hippocampus, which leads to AD.


Author(s):  
A. Aleksandrov ◽  
V. Konopelniuk ◽  
I. Kompanets ◽  
L. Ostapchenko

Obesity is one of the most common complex health problem. The pathway of serotonin synthesis takes part in neuroendocrine regulation, as well as in the regulation of a number of behavioral functions of the body and fat deposition. Serotonin is a mediator of the amine nature, which functions as a neurotransmitter and tissue hormone. The greatest amount of serotonin is synthesized in the brain and 12 duodenum. As a neurotransmitter, serotonin affects both directly and indirectly on the function of most brain cells. Female hormone progesterone influence on serotonin functions. One of the effect of progesterone is increasing of amount of fat tissue during the pregnancy. Long-term using of progesterone in hormone substitution therapy or as part of contraception also lead to fat accumulation effect. The levels of activity of serotonergic system enzymes, tryptophan hydroxylase, tryptophan decarboxylase and monoamine oxidase (MAO), and tryptophan, 5-hydroxytryptophan, serotonin and 5-hydroxyindoleacetic acid concentrations in the rat brain under obesity conditions caused by prolonged administration of progesterone were determined in this study. Studies have shown that the content of tryptophan, 5-hydroxytryptophan, serotonin and 5-hydroxyindoleacetic acid in the brain of rats under obesity caused by prolonged administration of progesterone increased in comparison with the rats of the control group. The levels of tryptophan hydroxylase and MAO activity decreased, and tryptophan decarboxylase activity levels increased in the rat brain under obesity conditions caused by prolonged administration of progesterone. Thus, as a result of our studies, we found an imbalance in the system of serotonin metabolism in the brain of rats with the development of hormonal obesity induced by prolonged administration of progesterone, which may indicate the involvement of the serotonergic neurotransmitter system in the mechanisms of the development of obesity and concomitant diseases.


2021 ◽  
Vol 17 (2) ◽  
pp. 6-15
Author(s):  
L.A. Dziak ◽  
O.S. Tsurkalenko ◽  
K.V. Chekha ◽  
V.M. Suk

Coronavirus infection is a systemic pathology resulting in impairment of the nervous system. The involvement of the central nervous system in COVID-19 is diverse by clinical manifestations and main mechanisms. The mechanisms of interrelations between SARS-CoV-2 and the nervous system include a direct virus-induced lesion of the central nervous system, inflammatory-mediated impairment, thrombus burden, and impairment caused by hypoxia and homeostasis. Due to the multi-factor mechanisms (viral, immune, hypoxic, hypercoagulation), the SARS-CoV-2 infection can cause a wide range of neurological disorders involving both the central and peripheral nervous system and end organs. Dizziness, headache, altered level of consciousness, acute cerebrovascular diseases, hypogeusia, hyposmia, peripheral neuropathies, sleep disorders, delirium, neuralgia, myalgia are the most common signs. The structural and functional changes in various organs and systems and many neurological symptoms are determined to persist after COVID-19. Regardless of the numerous clinical reports about the neurological and psychiatric symptoms of COVID-19 as before it is difficult to determine if they are associated with the direct or indirect impact of viral infection or they are secondary to hypoxia, sepsis, cytokine reaction, and multiple organ failure. Penetrated the brain, COVID-19 can impact the other organs and systems and the body in general. Given the mechanisms of impairment, the survivors after COVID-19 with the infection penetrated the brain are more susceptible to more serious diseases such as Parkinson’s disease, cognitive decline, multiple sclerosis, and other autoimmune diseases. Given the multi-factor pathogenesis of COVID-19 resulting in long-term persistence of the clinical symptoms due to impaired neuroplasticity and neurogenesis followed by cholinergic deficiency, the usage of Neuroxon® 1000 mg a day with twice-day dosing for 30 days. Also, a long-term follow-up and control over the COVID-19 patients are recommended for the prophylaxis, timely determination, and correction of long-term complications.


Author(s):  
Töres Theorell

This chapter is devoted to the biology of singing. Immediate effects have been extensively scientifically studied. Breathing and its synchronization with heart rate variability has been an important theme. Endocrine (endorphins, oxytocin, cortisol, testosterone) and immunological (TNF alpha, fibrinogen, immunoglobulines) reactions have also been studied during singing. In collective singing, cohesiveness is a major factor. Singing in a group during a choir rehearsal has stronger stimulation effects on oxytocin secretion than chatting in the same group. High levels of oxtytocin coincide with strong feelings of cohesiveness. In addition, oxytocin dampens anxiety and pain. Long-term effects of singing training and regular practice have been less extensively studied but there is evidence that singing training may influence such things as the brain´s development, the ability to synchronize heart and lung function, and the level of regenerative activity in the body.


Sign in / Sign up

Export Citation Format

Share Document