Comparison of Genetic Variations in Zika Virus Isolated From Different Geographic Regions

Author(s):  
Jooyeon Park ◽  
Jinhwa Jang ◽  
Insung Ahn

The Zika virus (ZIKV) belongs to the genus Flavivirus, together with Dengue virus, yellow fever virus, and West Nile virus. The virus, which was first found in Africa in 1947, has spread across the world owing to a lack of effective drugs or vaccines. The complete genome sequence of ZIKV is now available; it includes three structural and seven non-structure genes arranged in the order of capsid, pre-membrane, envelope, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. Two geographically distinct lineages are known, i.e., Asian and African, but ZIKV exhibits differences in clinical progression among regions.

2019 ◽  
Vol 268 ◽  
pp. 53-55 ◽  
Author(s):  
José A. Boga ◽  
Marta E. Alvarez-Arguelles ◽  
Susana Rojo-Alba ◽  
Mercedes Rodríguez ◽  
María de Oña ◽  
...  

Author(s):  
Muhammad Salman Haider Qureshi ◽  
Bakhtawar Wajeeha Qureshi ◽  
Ramsha Khan

<p class="abstract"><em>Zika virus</em> belongs to the family of Flaviviridae. The Flaviviridae family also includes other human pathogens like <em>West Nile virus</em> (WNV), <em>Yellow fever virus</em> (YFV), mosquito transmitted <em>Dengue virus</em> (DENV), <em>Tick borne encephalitic virus</em> (TBEV) and <em>Japanese encephalitis virus</em> (JEV). <em>Zika virus</em> is a mosquito-borne disease and is transmitted by <em>Aedes aegypti</em> mosquito<span lang="EN-IN">. </span></p>


Sexual Health ◽  
2018 ◽  
Vol 15 (3) ◽  
pp. 183 ◽  
Author(s):  
Miranda Sherley ◽  
Chong-Wei Ong

Zika virus is an emerging health threat worldwide. A member of the yellow fever virus family, it is primarily spread by mosquitoes of the Aedes (Stegomyia) genus. Unusually for a mosquito-borne virus, sexual spread has also been reported; with cases of male-to-female, female-to-male and male-to-male sexual transmission all now published in the scientific literature, in both symptomatic and asymptomatic infection. Female-to-female sexual transmission has not yet been reported, but is biologically plausible. The extent of the effect of sexual transmission on the spread of Zika virus around the world is not well-characterised, but has particular relevance to travellers to and from non-endemic regions, and assisted reproduction services.


KYAMC Journal ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 719-725
Author(s):  
Md Daharul Islam ◽  
SM Tajdit Rahman ◽  
Khaleda Akhter ◽  
Md Azizul Hoque ◽  
Anannya Roy ◽  
...  

Zika virus is a flavivirus related to Dengue virus, yellow fever virus and West Nile virus. It is considered an emerging arbovirus transmitted by mosquito of the genus Aedes. Its first description took place in 1947 in the Zika Forest in Uganda, isolated on Rhesus monkey used as bait to study the yellow fever virus. Clinical picture is characterized as a 'dengue-like' syndrome, with abrupt onset of fever; and an early onset of evanescent rash, often pruritic. Occasionally the disease has been associated with Guillain-Barré syndrome. The diagnosis can be performed by PCR or by IgG and IgM antibodies detection. No specific treatment or vaccine is available for Zika virus disease. Treatment is generally supportive. Control measures are same for dengue and chikungunya based mostly on health education and vector control.KYAMC Journal Vol. 7, No.-1, Jul 2016, Page 719-725


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 434 ◽  
Author(s):  
Ajit K. Karna ◽  
Sasha R. Azar ◽  
Jessica A. Plante ◽  
Rumei Yun ◽  
Nikos Vasilakis ◽  
...  

The introduction of Zika virus (ZIKV) to the Americas raised concern that the virus would spill back from human transmission, perpetuated by Aedes aegypti, into a sylvatic cycle maintained in wildlife and forest-living mosquitoes. In the Americas, Sabethes species are vectors of sylvatic yellow fever virus (YFV) and are therefore candidate vectors of a sylvatic ZIKV cycle. To test the potential of Sabethes cyaneus to transmit ZIKV, Sa. cyaneus and Ae. aegypti were fed on A129 mice one or two days post-infection (dpi) with a ZIKV isolate from Mexico. Sa. cyaneus were sampled at 3, 4, 5, 7, 14, and 21 days post-feeding (dpf) and Ae. aegypti were sampled at 14 and 21 dpf. ZIKV was quantified in mosquito bodies, legs, and saliva to measure infection, dissemination, and potential transmission, respectively. Of 69 Sa. cyaneus that fed, ZIKV was detected in only one, in all body compartments, at 21 dpf. In contrast, at 14 dpf 100% of 20 Ae. aegypti that fed on mice at 2 dpi were infected and 70% had virus in saliva. These data demonstrate that Sa. cyaneus is a competent vector for ZIKV, albeit much less competent than Ae. aegypti.


2019 ◽  
Vol 93 (14) ◽  
Author(s):  
Lisa Miorin ◽  
Maudry Laurent-Rolle ◽  
Giuseppe Pisanelli ◽  
Pierre Hendrick Co ◽  
Randy A. Albrecht ◽  
...  

ABSTRACT The recent yellow fever virus (YFV) epidemic in Brazil in 2017 and Zika virus (ZIKV) epidemic in 2015 serve to remind us of the importance of flaviviruses as emerging human pathogens. With the current global flavivirus threat, there is an urgent need for antivirals and vaccines to curb the spread of these viruses. However, the lack of suitable animal models limits the research questions that can be answered. A common trait of all flaviviruses studied thus far is their ability to antagonize interferon (IFN) signaling so as to enhance viral replication and dissemination. Previously, we reported that YFV NS5 requires the presence of type I IFN (IFN-α/β) for its engagement with human signal transducer and activator of transcription 2 (hSTAT2). In this manuscript, we report that like the NS5 proteins of ZIKV and dengue virus (DENV), YFV NS5 protein is able to bind hSTAT2 but not murine STAT2 (mSTAT2). Contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, replacing mSTAT2 with hSTAT2 cannot rescue the YFV NS5-STAT2 interaction, as YFV NS5 is also unable to interact with hSTAT2 in murine cells. We show that the IFN-α/β-dependent ubiquitination of YFV NS5 that is required for STAT2 binding in human cells is absent in murine cells. In addition, we demonstrate that mSTAT2 restricts YFV replication in vivo. These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses. IMPORTANCE Flaviviruses such as yellow fever virus (YFV), Zika virus (ZIKV), and dengue virus (DENV) are important human pathogens. A common flavivirus trait is the antagonism of interferon (IFN) signaling to enhance viral replication and spread. We report that like ZIKV NS5 and DENV NS5, YFV NS5 binds human STAT2 (hSTAT2) but not mouse STAT2 (mSTAT2), a type I IFN (IFN-α/β) pathway component. Additionally, we show that contrary to what has been demonstrated with ZIKV NS5 and DENV NS5, YFV NS5 is unable to interact with hSTAT2 in murine cells. We demonstrate that mSTAT2 restricts YFV replication in mice and that this correlates with a lack of IFN-α/β-induced YFV NS5 ubiquitination in murine cells. The lack of suitable animal models limits flavivirus pathogenesis, vaccine, and drug research. These data serve as further impetus for the development of an immunocompetent mouse model that can serve as a disease model for multiple flaviviruses.


2013 ◽  
Vol 8 (10) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Md Abubakr ◽  
Subhash C Mandal ◽  
Sugato Banerjee

Arthropod borne flaviviral diseases are a major public health concern in the tropics. However, the majority of cases are associated with Dengue virus (DENV), Yellow Fever virus (YFV), West Nile virus (WNV) and Chikungunya virus (CHIKV) infections. Despite their profound clinical and economic impact among large sections of the population there is a lack of effective treatment against these diseases. A large number of plants are available in nature, which may act as a source for lead molecules against various diseases including arthropod borne flaviviral infections. In this review we discuss various crude extracts as well as purified compounds from natural sources with promising anti-DENV, YFV, WNV and CHIKV activity.


2019 ◽  
Vol 24 (4) ◽  
Author(s):  
My VT Phan ◽  
Sarwa Darwish Murad ◽  
Annemiek A van der Eijk ◽  
Herold J. Metselaar ◽  
Hermien Hartog ◽  
...  

In November 2018, yellow fever was diagnosed in a Dutch traveller returning from a bicycle tour in the Gambia-Senegal region. A complete genome sequence of yellow fever virus (YFV) from the case was generated and clustered phylogenetically with YFV from the Gambia and Senegal, ruling out importation into the Netherlands from recent outbreaks in Brazil or Angola. We emphasise the need for increased public awareness of YFV vaccination before travelling to endemic countries.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
M. J. Schultz ◽  
A. L. Tan ◽  
C. N. Gray ◽  
S. Isern ◽  
S. F. Michael ◽  
...  

ABSTRACTMosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacteriumWolbachia pipientisfrom supergroup A is a recent strategy employed to reduce the capacity for major vectors in theAedesmosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup BWolbachia wStri, isolated fromLaodelphax striatellus, was shown to inhibit multiple lineages of ZIKV inAedes albopictuscells. Here, we show thatwStri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%.wStri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited bywStri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry intowStri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate inWolbachia-infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis inwStri-infected cells. This study’s findings increase the potential for application ofwStri to block additional arboviruses and also identify specific blocks in viral infection caused byWolbachiacoinfection.IMPORTANCEDengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so far failed, making it crucial to explore new ways of limiting the spread of these viruses. Here, we show that introduction of an insect symbiont,Wolbachia wStri, into mosquito cells is highly effective at reducing yellow fever virus, dengue virus, Zika virus, and Chikungunya virus production. Reduction of virus replication was attributable to decreases in entry and a strong block of virus gene expression at the translational level. These findings expand the potential use ofWolbachia wStri to block viruses and identify two separate steps for limiting virus replication in mosquitos that could be targeted via microbes or other means as an antiviral strategy.


Author(s):  
Emily R. Schultz ◽  
Tyanthony J. Jones ◽  
Kelli L. Barr

Zika virus (ZIKV) is a flavivirus that originated in Africa but emerged in Latin America in 2015. In this region, other flaviviruses such as Dengue (DENV), West Nile, and Yellow Fever Virus (YFV) also circulate, allowing for possible antigenic cross-reactivity to impact viral infections and immune responses. Studies have found antibody mediated enhancement between DENV and ZIKV, but the impact of YFV antibodies on ZIKV infection has not been fully explored. ZIKV infections cause congenital syndromes, such as microcephaly, necessitating further research into ZIKV vertical transmission through the placental barrier. Recent advancements in biomedical engineering have generated co-culture methods that allow for in vitro recapitulation of the maternal: fetal interface. This study utilized a transwell assay, which is a co-culture model utilizing human placental syncytiotrophoblasts, fetal umbilical cells, and a differentiating embryoid body to replicate the maternal: fetal axis. To determine if cross reactive YFV vaccine antibodies impact the pathogenesis of ZIKV across the maternal fetal axis, maternal syncytiotrophoblasts were inoculated with ZIKV or ZIKV incubated with YFV vaccine anti-sera, and viral load was measured 72 hours post inoculation. The data show that the impact of YFV on ZIKV replication is cell line dependent. In differentiating embryoids, the presence of YFV antibodies enhanced ZIKV infection. Since viral pathogenesis, and the impact of antigenic cross-reactive antibodies, is cell line specific at the maternal-fetal axis, this suggests there may be discreet mechanisms that impact congenital ZIKV infections.


Sign in / Sign up

Export Citation Format

Share Document