VerSA

2021 ◽  
Vol 15 (3) ◽  
pp. 65-82
Author(s):  
Oladayo Olufemi Olakanmi ◽  
Kehinde Oluwasesan Odeyemi

The advent of the internet of things (IoT) and augmented reality technology not only introduces a wide range of security risks and challenges but also increases traffic on the existing wireless communication networks. This is due to the enormity of the traffics generated by the connected IoT devices whose number keeps increasing. Therefore, any IoT network requires an effective security solution capable of securing data and minimizing traffic on the IoT networks. To address these, the authors propose a practicable secure data aggregation scheme, VerSA, based on data grouping aggregation, batch verification through the aggregated signature ratios, and symmetric encryption with a pairing free key distribution. The scheme is capable of grouping and aggregating sub-network data into homogeneous and heterogeneous groups, detecting and filtering injected false data. The results show that the proposed scheme is not only secure against IoT related attacks but also has the lowest computational and communication overheads compared to the recent state-of-the-art schemes.

Author(s):  
Md Alimul Haque ◽  
Shameemul Haque ◽  
Kailash Kumar ◽  
Narendra Kumar Singh

The role of the internet of things (IoT) and cyberspace in a digital society is well recognized, and they have become tremendously popular due to certain features like the ability to ease the operational process of businesses and instant communication. Recent developments in the fields of wireless communication networks like 4G, 5G, and 6G with IoT applications have greatly benefited human welfare. Still, the rapid growth of various IoT applications focuses on automating different tasks and are trying to empower the inanimate physical objects to act without any human intervention. It has also contributed to unethical practices by hackers who use new tools and techniques to penetrate more complex or well-controlled environments and produce increased damage and even remain under the cover. The main objective of this chapter is to improve understanding of the challenges to secure future digital infrastructure while it is still evolving. In this context, a detailed review of the security-related issues, challenges, threats, and countermeasures in the IoT applications is presented.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2647 ◽  
Author(s):  
Matevž Pustišek ◽  
Anton Umek ◽  
Andrej Kos

Those working on Blockchain technologies have described several new innovative directions and novel services in the Internet of things (IoT), including decentralized trust, trusted and verifiable execution of smart contracts, and machine-to-machine communications and automation that reach beyond the mere exchange of data. However, applying blockchain principles in the IoT is a challenge due to the constraints of the end devices. Because of fierce cost pressure, the hardware resources in these devices are usually reduced to the minimum necessary for operation. To achieve the high coverage needed, low bitrate mobile or wireless technologies are frequently applied, so the communication is often constrained, too. These constraints make the implementation of blockchain nodes for IoT as standalone end-devices impractical or even impossible. We therefore investigated possible design approaches to decentralized applications based on the Ethereum blockchain for the IoT. We proposed and evaluated three application architectures differing in communication, computation, storage, and security requirements. In a pilot setup we measured and analyzed the data traffic needed to run the blockchain clients and their applications. We found out that with the appropriate designs and the remote server architecture we can strongly reduce the storage and communication requirements imposed on devices, with predictable security implications. Periodic device traffic is reduced to 2400 B/s (HTTP) and 170 B/s (Websocket) from about 18 kB/s in the standalone-device full client architecture. A notification about a captured blockchain event and the corresponding verification resulted in about 2000 B of data. A transaction sent from the application to the client resulted in an about 500 B (HTTP) and 300 B message (Websocket). The key store location, which affects the serialization of a transaction, only had a small influence on the transaction-related data. Raw transaction messages were 45 B larger than when passing the JSON transaction objects. These findings provide directions for fog/cloud IoT application designers to avoid unrealistic expectations imposed upon their IoT devices and blockchain technologies, and enable them to select the appropriate system design according to the intended use case and system constraints. However, for very low bit-rate communication networks, new communication protocols for device to blockchain-client need to be considered.


2021 ◽  
Vol 2 (4) ◽  
pp. 155-159
Author(s):  
Suma V

The conventional infrastructure for mobile-communication is used for providing internet-of-things (IoT) services by the third-generation partnership project (3GPP) with the help of the recently developed cellular internet-of-things (CIoT) scheme. Random-access procedure can be used for connecting the large number of IoT devices using the CIoT systems. This process is advantages as the huge devices are accessed in a concurrent manner. When random access procedures are used simultaneously on a massive number of devices, the probability of congestion is high. This can be controlled to a certain extent through the time division scheme. A power efficient time-division random access model is developed in this paper to offer reliable coverage enhancement (CE) based on the coverage levels (CL). The quality of radio-channel is used for categorization of the CIoT devices after assigning them with CLs. The performance of random-access model can be improved and the instantaneous contention is relaxed greatly by distributing the loads based on their coverage levels into different time periods. Markov chain is used for mathematical analysis of the behavior and state of the devices. The probability of blocking access, success rate and collision control are enhanced by a significant level using this model in comparison to the conventional schemes.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3036
Author(s):  
German Cano-Quiveu ◽  
Paulino Ruiz-de-clavijo-Vazquez ◽  
Manuel J. Bellido ◽  
Jorge Juan-Chico ◽  
Julian Viejo-Cortes ◽  
...  

The Internet of Things (IoT) security is one of the most important issues developers have to face. Data tampering must be prevented in IoT devices and some or all of the confidentiality, integrity, and authenticity of sensible data files must be assured in most practical IoT applications, especially when data are stored in removable devices such as microSD cards, which is very common. Software solutions are usually applied, but their effectiveness is limited due to the reduced resources available in IoT systems. This paper introduces a hardware-based security framework for IoT devices (Embedded LUKS) similar to the Linux Unified Key Setup (LUKS) solution used in Linux systems to encrypt data partitions. Embedded LUKS (E-LUKS) extends the LUKS capabilities by adding integrity and authentication methods, in addition to the confidentiality already provided by LUKS. E-LUKS uses state-of-the-art encryption and hash algorithms such as PRESENT and SPONGENT. Both are recognized as adequate solutions for IoT devices being PRESENT incorporated in the ISO/IEC 29192-2:2019 for lightweight block ciphers. E-LUKS has been implemented in modern XC7Z020 FPGA chips, resulting in a smaller hardware footprint compared to previous LUKS hardware implementations, a footprint of about a 10% of these LUKS implementations, making E-LUKS a great alternative to provide Full Disk Encryption (FDE) alongside authentication to a wide range of IoT devices.


2020 ◽  
Vol 62 (5-6) ◽  
pp. 215-226
Author(s):  
Ege Korkan ◽  
Sebastian Kaebisch ◽  
Sebastian Steinhorst

AbstractThe Internet of Things (IoT) is bringing Internet connectivity to a wide range of devices which results in an increasing number of products for smart home, industry 4.0 and/or smart cities. Even though IoT has the ambition to reach an increasing amount of devices and be scalable across different domains, lack of interoperability inhibits this scope to be attained. Recent standardization efforts by the World Wide Web Consortium (W3C) are addressing the interoperability problem by the means of Thing Description (TD) that allows humans and machines to understand the capabilities and communication interfaces of IoT devices. In this paper, we show a more systematic and streamlined development of IoT devices and systems that relies on the TD standard. We introduce three different complementary methods that can be applied independently in the different stages of the development, or as a framework to streamline the development of IoT devices and systems. As a result of using the TD standard, interoperability between IoT devices of various stakeholders is ensured from early stages and the time to market is reduced.


Author(s):  
Neha Gupta

Wireless communication networks are highly prone to security threats. The major applications of wireless communication networks are in military, business, healthcare, retail, and transportations. These systems use wired, cellular, or adhoc networks. Wireless sensor networks, actuator networks, and vehicular networks have received a great attention in society and industry. In recent years, the internet of things (IoT) has received considerable research attention. The IoT is considered as future of the internet. In the future, IoT will play a vital role and will change our living styles, standards, as well as business models. The usage of IoT in different applications is expected to rise rapidly in the coming years. The IoT allows billions of devices, peoples, and services to connect with others and exchange information. Due to the increased usage of IoT devices, the IoT networks are prone to various security attacks.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 752 ◽  
Author(s):  
Ye-Jin Choi ◽  
Hee-Jung Kang ◽  
Il-Gu Lee

The Internet of things (IoT) technology, which is currently considered the new growth engine of the fourth industrial revolution, affects our daily life and has been applied to various industrial fields. Studies on overcoming the limitations of scalability and stability in a centralized IoT operating environment by employing distributed blockchain technology have been actively conducted. However, the nature of IoT that ensures connectivity with multiple objects at any time and any place increases security threats. Further, it extends the influence of the cyber world into the physical domain, resulting in serious damage to human life and property. Therefore, we aim to study a method to increase the security of IoT devices and effectively extend them simultaneously. To this end, we analyze the authentication methods and limitations of traditional IoT devices and examine cases for improving IoT environments by using blockchain technology. Accordingly, we propose a framework that allows IoT devices to be securely connected and extended to other devices by automatically evaluating security using blockchain technology and the whitelist. The method proposed in this paper restricts the extension of devices vulnerable to security risks by imposing penalties and allows only devices with high security to be securely and quickly authenticated and extended without user intervention. In this study, we applied the proposed method to IoT network simulation environments and observed that the number of devices vulnerable to security was reduced by 48.5% compared with traditional IoT environments.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Hasan Alkahtani ◽  
Theyazn H. H. Aldhyani

The Internet of Things (IoT) has grown rapidly, and nowadays, it is exploited by cyber attacks on IoT devices. An accurate system to identify malicious attacks on the IoT environment has become very important for minimizing security risks on IoT devices. Botnet attacks are among the most serious and widespread attacks, and they threaten IoT devices. Motionless IoT devices have a security weakness due to lack of sufficient memory and computation results for a security platform. In addition, numerous existing systems present themselves for finding unknown patterns from IoT networks to improve security. In this study, hybrid deep learning, a convolutional neural network and long short-term memory (CNN-LSTM) algorithm, was proposed to detect botnet attacks, namely, BASHLITE and Mirai, on nine commercial IoT devices. Extensive empirical research was performed by employing a real N-BaIoT dataset extracted from a real system, including benign and malicious patterns. The experimental results exposed the superiority of the CNN-LSTM model with accuracies of 90.88% and 88.61% in detecting botnet attacks from doorbells (Danminin and Ennio brands), whereas the proposed system achieved good accuracy (88.53%) in identifying botnet attacks from thermostat devices. The accuracies of the proposed system in detecting botnet attacks from security cameras were 87.19%, 89.23%, 87.76%, and 89.64%, with respect to accuracy metrics. Overall, the CNN-LSTM model was successful in detecting botnet attacks from various IoT devices with optimal accuracy.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 634 ◽  
Author(s):  
Fawad Ali Khan ◽  
Rafidah Md Noor ◽  
Miss Laiha Mat Kiah ◽  
Noorzaily Mohd Noor ◽  
Saleh M. Altowaijri ◽  
...  

The Internet of Things has gained substantial attention over the last few years, because of connecting daily things in a wide range of application and domains. A large number of sensors require bandwidth and network resources to give-and-take queries among a heterogeneous IoT network. Network flooding is a key questioning strategy for successful exchange of queries. However, the risk of the original flooding is prone to unwanted and redundant network queries which may lead to heavy network traffic. Redundant, unwanted, and flooded queries are major causes of inefficient utilization of resources. IoT devices consume more energy and high computational time. More queries leads to consumption of more bandwidth, cost, and miserable QoS. Current existing approaches focused primarily on how to speed up the basic routing for IoT devices. However, solutions for flooding are not being addressed. In this paper, we propose a cluster-based flooding (CBF) as an interoperable solution for network and sensor layer devices which is also capable minimizing the energy consumption, cost, network flooding, identifying, and eliminating of redundant flooding queries using query control mechanisms. The proposed CBF divides the network into different clusters, local queries for information are proactively maintained by the intralayer cluster (IALC), while the interlayer cluster (IELC) is responsible for reactively obtain the routing queries to the destinations outside the cluster. CBF is a hybrid approach, having the potential to be more efficient against traditional schemes in term of query traffic generation. However, in the absence of appropriate redundant query detection and termination techniques, the CBF may generate more control traffic compared to the standard flooding techniques. In this research work, we used Cooja simulator to evaluate the performance of the proposed CBF. According to the simulation results the proposed technique has superiority in term of traffic delay, QoS/throughput, and energy consumption, under various performance metrics compared with traditional flooding and state of the art.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1935 ◽  
Author(s):  
Shancang Li ◽  
Houbing Song ◽  
Muddesar Iqbal

With the exponential growth of the Internet of Things (IoT) and cyber-physical systems (CPS), a wide range of IoT applications have been developed and deployed in recent years. To match the heterogeneous application requirements in IoT and CPS systems, many resource-constrained IoT devices are deployed, in which privacy and security have emerged as difficult challenges because the devices have not been designed to have effective security features.


Sign in / Sign up

Export Citation Format

Share Document