Techniques for Determining Mechanical Properties of Power-Law Materials by Instrumented Indentation Tests

Author(s):  
J. Lin ◽  
J. Luo ◽  
T.A. Dean
Holzforschung ◽  
2009 ◽  
Vol 63 (4) ◽  
Author(s):  
Stefanie Stanzl-Tschegg ◽  
Wilfried Beikircher ◽  
Dieter Loidl

Abstract Thermal modification is a well established method to improve the dimensional stability and the durability for outdoor use of wood. Unfortunately, these improvements are usually accompanied with a deterioration of mechanical performance (e.g., reduced strength or higher brittleness). In contrast, our investigations of the hardness properties in the longitudinal direction of beech wood revealed a significant improvement with thermal modification. Furthermore, we applied instrumented indentation tests on different hierarchical levels of wood structure (growth ring and cell wall level) to gain closer insights on the mechanisms of thermal treatment of wood on mechanical properties. This approach provides a variety of mechanical data (e.g., elastic parameters, hardness parameters, and viscoelastic properties) from one single experiment. Investigations on the influence of thermal treatment on the mechanical properties of beech revealed similar trends on the growth ring as well as the on the cell wall level of the wood structure.


Author(s):  
Pham Thai Hoan ◽  
Nguyen Ngoc Vinh ◽  
Nguyen Thi Thanh Tung

In this study, instrumented indentation testing was conducted at room temperature for the investigation of the effect of strain rate on the hardness and yield strength in the weld zone of a commonly used structural steel, SM520. A number of indentation tests were undertaken at a number of strain rate values from 0.02 s-1 to 0.2 s-1 in the weld metal (WM), heat-affected zone (HAZ), and base metal (BM) regions of the weld zone. The mechanical properties including yield strength (σy) and hardness (H) in WM, HAZ, and BM were then computed from the applied load-penetration depth curves using a proposed method. As the result, the effects of strain rate indentation on yield strength and hardness in all regions of the weld zone were evaluated. The results displayed that hardness and yield strength in the weld zone’s components are influenced on the strain rate, where both hardness and yield strength decrease with the decreasing strain rate. Keywords: indentation; mechanical properties; strain rate effect; structural steel; weld zone.


2013 ◽  
Vol 59 (213) ◽  
pp. 35-46 ◽  
Author(s):  
Daisy Huang ◽  
Jonah H. Lee

AbstractAn attempt is made to obtain and quantify the mechanical properties of two common types of seasonal snow on the ground. Different samples of natural snow whose metamorphism had stabilized (such as would remain on a road throughout winter in a cold, snowy area) were gathered and tested using mesoscale indentation tests (metrics on the order of mm to cm). Results from the stress vs displacement curves from indentation indicated that (1) first peak strength decreased, according to a power law, with increasing indenter size and was not affected by snow average grain size, (2) plateau strength decreased with increasing indenter size, and snow compaction strength might be calculated from these data, and (3) mean energy absorption density during indentation was independent of indenter size in some size ranges, and decreased with increasing indenter size in other size ranges.


2014 ◽  
Vol 59 ◽  
pp. 239-246 ◽  
Author(s):  
S.C. Cifuentes ◽  
E. Frutos ◽  
R. Benavente ◽  
J.L. González-Carrasco ◽  
V. Lorenzo

2010 ◽  
Vol 25 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Seung-Kyun Kang ◽  
Ju-Young Kim ◽  
Chan-Pyoung Park ◽  
Hyun-Uk Kim ◽  
Dongil Kwon

We evaluate Vickers hardness and true instrumented indentation test (IIT) hardness of 24 metals over a wide range of mechanical properties using just IIT parameters by taking into account the real contact morphology beneath the Vickers indenter. Correlating the conventional Vickers hardness, indentation contact morphology, and IIT parameters for the 24 metals reveals relationships between contact depths and apparent material properties. We report the conventional Vickers and true IIT hardnesses measured only from IIT contact depths; these agree well with directly measured hardnesses within ±6% for Vickers hardness and ±10% for true IIT hardness.


2017 ◽  
Vol 265 ◽  
pp. 496-500
Author(s):  
A.N. Demidov ◽  
M.A. Karimbekov ◽  
A.Yu. Marchenkov

The mechanical properties investigation results obtained by tension and indentation tests of RIP (resin impregnated paper) electric insulator are presented. Tension and indentation tests of the RIP electric insulation material in wide temperature range are conducted. The common relations between strength and temperature as well as between hardness and temperature for the RIP electric insulation are established. The ratio of ultimate tensile strength to Brinell hardness is performed to be constant (about 1/3) irrespective of temperature, that means a possibility of the RIP electric insulation mechanical properties evaluation by the instrumented indentation test.


2005 ◽  
Vol 490-491 ◽  
pp. 454-459 ◽  
Author(s):  
Jens Gibmeier ◽  
Stefan Hartmann ◽  
Berthold Scholtes

Various methods have been proposed in recent years for the determination of mechanical properties of a material by using instrumented indentation testing. These load and depth sensing indentation techniques imply the measurement of a characteristic load-indentation depth curve by the aid of which numerous materials properties can be extracted. On the other hand in many publications the effect of applied or residual stresses on the results of hardness readings is investigated. Methods are proposed to estimate applied or residual stresses by means of instrumented indentation testing. Based on this obvious inconsistency between these procedures on the use of information of instrumented hardness testing the influence of residual stresses as well as applied stresses on continuous microhardness readings is systematically investigated for steel samples. Experimental investigations were supplemented by finite element simulations of ball indentation tests on equi-biaxially prestressed materials states. These simulations show that the registered force-indentation depth curves as well as the geometry of the indentations are affected by loading and residual stresses in a characteristic way. For hardness values changes of up to 35% are determined with reference to the unstressed initial state.


2007 ◽  
Vol 340-341 ◽  
pp. 555-562 ◽  
Author(s):  
J. Lin ◽  
J. Luo ◽  
Trevor A. Dean

A novel optimization approach is proposed to extract mechanical properties of a power law material from its given experimental nano-indentation P-h curves. A set of equations have been established to relate the P-h curve to mechanical properties, E, σ y and n, of a material. Using the proposed optimization approach, convergence studies were carried out for the determination of the mechanical properties of materials. It was found that the mechanical properties of an elastic-plastic material usually cannot be uniquely determined using a single loading and unloading P-h curve. Thus a technique has also been developed to determine the material properties from indentation p-h curves using indenters with two different angles. This enables the mechanical properties of materials to be uniquely determined.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Aermes ◽  
Alexander Hayn ◽  
Tony Fischer ◽  
Claudia Tanja Mierke

AbstractThe knowledge of cell mechanics is required to understand cellular processes and functions, such as the movement of cells, and the development of tissue engineering in cancer therapy. Cell mechanical properties depend on a variety of factors, such as cellular environments, and may also rely on external factors, such as the ambient temperature. The impact of temperature on cell mechanics is not clearly understood. To explore the effect of temperature on cell mechanics, we employed magnetic tweezers to apply a force of 1 nN to 4.5 µm superparamagnetic beads. The beads were coated with fibronectin and coupled to human epithelial breast cancer cells, in particular MCF-7 and MDA-MB-231 cells. Cells were measured in a temperature range between 25 and 45 °C. The creep response of both cell types followed a weak power law. At all temperatures, the MDA-MB-231 cells were pronouncedly softer compared to the MCF-7 cells, whereas their fluidity was increased. However, with increasing temperature, the cells became significantly softer and more fluid. Since mechanical properties are manifested in the cell’s cytoskeletal structure and the paramagnetic beads are coupled through cell surface receptors linked to cytoskeletal structures, such as actin and myosin filaments as well as microtubules, the cells were probed with pharmacological drugs impacting the actin filament polymerization, such as Latrunculin A, the myosin filaments, such as Blebbistatin, and the microtubules, such as Demecolcine, during the magnetic tweezer measurements in the specific temperature range. Irrespective of pharmacological interventions, the creep response of cells followed a weak power law at all temperatures. Inhibition of the actin polymerization resulted in increased softness in both cell types and decreased fluidity exclusively in MDA-MB-231 cells. Blebbistatin had an effect on the compliance of MDA-MB-231 cells at lower temperatures, which was minor on the compliance MCF-7 cells. Microtubule inhibition affected the fluidity of MCF-7 cells but did not have a significant effect on the compliance of MCF-7 and MDA-MB-231 cells. In summary, with increasing temperature, the cells became significant softer with specific differences between the investigated drugs and cell lines.


Sign in / Sign up

Export Citation Format

Share Document