Micropatterning of Monodisperse Spherical Particles by Electrophoretic Deposition Process Using Interdigitated Microarray Electrode

Author(s):  
Jun Ichi Hamagami ◽  
Kazuhiro Hasegawa ◽  
Kiyoshi Kanamura
2006 ◽  
Vol 301 ◽  
pp. 243-246 ◽  
Author(s):  
Jun Ichi Hamagami ◽  
Kazuhiro Hasegawa ◽  
Kiyoshi Kanamura

Micrometer wire consisting of microbeads was successfully fabricated onto a patterned conductive electrode substrate by an electrophoretic deposition (EPD) process with precise control of electric field distribution generated in the colloidal suspension. Monodisperse polystyrene microspheres with 320 nm in diameter and an interdigitated microarray Au electrode having 10 μm in width and 5 μm in spacing were used in this EPD system. A micropattern of polystyrene particles with two dimensional arrays was formed onto the patterned electrode by the EPD process with two electrode system using an electrostatic interaction between the electrodes and the charged particles in the suspension.


2006 ◽  
Vol 314 ◽  
pp. 159-166 ◽  
Author(s):  
Kiyoharu Tadanaga ◽  
Kenji Takahashi ◽  
Masahiro Tatsumisago ◽  
Atsunori Matsuda

Micropatterns of phenylsilsesquioxane thick films have been prepared by electrophoretic sol-gel deposition using ITO-coated substrates with a hydrophobic-hydrophilic patterned surface. After the electrophoretic deposition, phenylsilsesquioxane thick films were formed only on hydrophilic areas on the pattern. These thick films obtained immediately after the electrophoretic deposition were opaque due to light scattering. However, phenylsilsesquioxane particles in the films were morphologically changed from aggregates of the spherical particles to continuous phase by a heat treatment process, and finally convex shaped phenylsilsesquioxane micropatterns were formed only on the hydrophilic areas.


2018 ◽  
Vol 27 (01n02) ◽  
pp. 1840002 ◽  
Author(s):  
Machhindra Koirala ◽  
Jia Woei Wu ◽  
Adam Weltz ◽  
Rajendra Dahal ◽  
Yaron Danon ◽  
...  

We present a cost effective and scalable approach to fabricate solid state thermal neutron detectors. Electrophoretic deposition technique is used to fill deep silicon trenches with 10B nanoparticles instead of conventional chemical vapor deposition process. Deep silicon trenches with width of 5-6 μm and depth of 60-65 μm were fabricated in a p-type Si (110) wafer using wet chemical etching method instead of DRIE method. These silicon trenches were converted into continuous p-n junction by the standard phosphorus diffusion process. 10B micro/nano particle suspension in ethyl alcohol was used for electrophoretic deposition of particles in deep trenches and iodine was used to change the zeta potential of the particles. The measured effective boron nanoparticles density inside the trenches was estimated to be 0.7 gm cm-3. Under the self-biased condition, the fabricated device showed the intrinsic thermal neutron detection efficiency of 20.9% for a 2.5 × 2.5 mm2 device area.


2015 ◽  
Vol 654 ◽  
pp. 218-223 ◽  
Author(s):  
Alexander Heinemann ◽  
Sven Koenen ◽  
Kerstin Schwabe ◽  
Christoph Rehbock ◽  
Stephan Barcikowski

Electrophoretic deposition of ligand-free platinum nanoparticles has been studied to elucidate how wettability, indicated by contact angle measurements, is linked to vital parameters of the electrophoretic deposition process. These parameters, namely the colloid concentration, electric field strength and deposition time, have been systematically varied in order to determine their influence on the contact angle. Additionally, scanning electron microscopy has been used to confirm the homogeneity of the achieved coatings.


Author(s):  
A.M. Ahmed ◽  
R.H. Rangel ◽  
V.V. Sobolev ◽  
J.M. Guilemany

Abstract This paper presents a mathematical model of the in-flight oxidation of spherical particles during thermal spray deposition process. The model includes analysis of the mechanical and thermal behavior of the powder particles. The former accounts for acceleration and deceleration of the particles at the spray distance under different fluid velocities. The thermal behavior takes into account heating, melting, cooling and possible solidification as the particle travel towards the substrate. A finite-difference method is used to solve the thermal energy conservation equation of the particles. The model includes nonequilibrium calculations of the phase change phenomena in the liquid-solid (mushy) zone. The growth of the oxide layer at the particle surface is represented by a modified boundary condition, which includes finite-rate oxidation. The results obtained give the interrelations between various process parameters and the oxidation phenomenon and agree with experimental observation.


2020 ◽  
Vol 103 (12) ◽  
pp. 6780-6792
Author(s):  
Chenning Zhang ◽  
Tetsuo Uchikoshi ◽  
Lihong Liu ◽  
Gemei Cai ◽  
Jiayong Si ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document