Thickness Dependence of Structural and Optical Characteristics of AZO Thin Films for Organic Photovoltaic Cells

2011 ◽  
Vol 117-119 ◽  
pp. 1076-1079
Author(s):  
S.L. Wei ◽  
L.H. Zeng ◽  
Z.Y. Zhong ◽  
J.H. Gu

Aluminum-doped zinc oxide (AZO) thin films with highly (002)-preferred orientation were grown on glass substrates by rf magnetron sputtering. The effect of thickness on structural and optical characteristics of the deposited films were investigated by X-ray diffractometer and spectrophotometer. The results show that the polycrystalline AZO films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate, and that the thickness significantly affects the crystal structure and optical properties of the thin films. With the increase of thickness, the crystallite size of the films increases, the lattice spacing, dislocation density, micro strain and optical energy gap decrease, and the average transmitance in the wavelength range of the visible spectrum also slightly decreases.

2011 ◽  
Vol 337 ◽  
pp. 532-535
Author(s):  
J.H. Gu ◽  
Zhi You Zhong ◽  
C.Y. Yang

Thin films of transparent conducting aluminum-doped zinc oxide (ZnO:Al) were grown by rf magnetron sputtering technique using a sintered ceramic target of ZnAl2O4. The microstructure and optoelectrical properties of the deposited films were characterized wiyh XRD, four-point probe and spectrophotometer. The results show that the polycrystalline ZnO:Al films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate, and that the substrate temperature significantly affects the crystal structures and optoelectrical properties of the thin films. The ZnO:Al films deposited at the substrate temperature of 670 K has the relatively well crystallinity, the largest crystal grain, the highest transmittance and the highest figure of merit.


2013 ◽  
Vol 734-737 ◽  
pp. 2124-2127
Author(s):  
T. Zhang ◽  
H. Wang ◽  
Z.Y. Zhong ◽  
C.Y. Yang

Titanium and gallium co-doped zinc oxide (TGZO) thin films with highly (002)-preferred orientation were grown on glass substrates by magnetron sputtering. The effect of thickness on structure and optical properties of the deposited films were investigated by X-ray diffractometer and spectrophotometer. The results show that the polycrystalline TGZO films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate, and that the thickness significantly affects the crystal structure and optical properties of the thin films. It is observed that the average transmitance in the wavelength range of the visible spectrum decreases with the increase of thickness. The TGZO thin film with about 900 nm thickness exhibits the maximum grain size, the lowest dislocation density and the minimum micro strain.


2019 ◽  
Vol 14 (29) ◽  
pp. 1-7
Author(s):  
Farah Q. Kamil

PbxCd1-xSe compound with different Pb percentage (i.e. X=0,0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin filmswere deposited by thermal evaporation on glass substrates at filmthickness (126) nm. The optical measurements indicated thatPbxCd1-xSe films have direct optical energy gap. The value of theenergy gap decreases with the increase of Pb content from 1.78 eV to1.49 eV.


2020 ◽  
pp. 44-52
Author(s):  
Ahmed Ahmed S. Abed ◽  
Sattar J. Kasim ◽  
Abbas F. Abbas

In the present study, the microwave heating method was used to prepare cadmium sulfide quantum dots CdSQDs films. CdS nanoparticles size average obtained as (7nm). The morphology, structure and composition of prepared CdSQDs were examined using (FE-SEM), (XRD) and (EDX). Optical properties of CdSQDs thin films formed and deposited onto glass substrates have been studied at room temperature using UV/ Visible spectrophotometer within the wavelength of (300-800nm), and Photoluminescence (PL) spectrum. The optical energy gap (Eg) which estimated using Tauc relation was equal (2.6eV). Prepared CdS nanoparticles thin films are free from cracks, pinholes and have high adhesion to substrate.


2012 ◽  
Vol 1394 ◽  
Author(s):  
Coralie Charpentier ◽  
Patricia Prod’Homme ◽  
Loïc Francke ◽  
Pere Roca i Cabarrocas

ABSTRACTAluminum-doped zinc oxide (ZnO:Al) thin films were prepared on glass substrates by radio frequency (RF) magnetron sputtering from a ceramic mixed target ZnO:Al2O3 (1 wt.%) with a power of 250 W. Two series of samples were deposited at room temperature, the first one in pure Ar atmosphere, the second one in Ar/O2 gas mixture. Effects of post-deposition annealing treatments carried out from 400 °C to 500 °C under vacuum and in N2/H2 (5%) atmosphere have been investigated. The influence of these parameters was studied by a detailed microstructural analysis using X-Ray diffraction and Raman spectroscopy. For N2/H2 annealing process, the increase of charge carrier concentration limits the increase of the mobility while after vacuum annealing, an improvement of both electrical and optical properties was observed. The increase of the crystallinity and grain size for ZnO:Al films deposited in Ar/O2 gas mixture could explain their improvements. Resistivity was reduced down to 3.5×10-4 Ω.cm, for a mobility of 49 cm2/V.s with a vacuum annealing at 450 °C for ZnO:Al deposited in Ar/O2 gas mixture.


Author(s):  
Islam M El radaf ◽  
Hnan Y Alzahrani

Abstract We deposited CuGaSnS4 thin films on soda-lima glass substrates via a spray pyrolysis process. The X-ray diffraction of CuGaSnS4 films established the formation of an orthorhombic single phase. In addition, the structural parameters of the CuGaSnS4 films were estimated by Debye-Scherer’s formulas, which showed that an enhancement in crystallite size (D) values occurred by increasing the thickness of the investigated films. The EDAX pattern of CuGaSnS4 films confirms a stoichiometric composition. The optical results revealed that the CuGaSnS4 films possessed a direct optical energy gap (Eg). The Eg values were reduced from 1.50 to 1.38 eV with the increase in thickness. Also, there was an observed increase in the linear refractive index and the linear absorption coefficient values occurred due to the increased thickness. Finally, the optoelectrical constants of the sprayed CuGaSnS4 films such as the optical conductivity (σopt) and the optical free carrier concentration to effective mass (N_opt/m^* ) were enlarged with increasing film thickness. The nonlinear optical study showed that the increase in film thickness enhanced the nonlinear optical constants of CuGaSnS4 films. The hot-probe procedure shows that the sprayed CuGaSnS4 films expose p-type conductivity.


Author(s):  
Nahida B. Hasan ◽  
Ghusson H. Mohammed ◽  
Mohammed A. Abdul Majeed

CdO thin films have been deposited at different concentration of SnO2 (x= (0.0, 0.05, 0.1, 0.15 and 0.2)) Wt. % onto glass substrates by pulsed laser deposition technique (PLD) using Nd-YAG laser with λ=1064nm, energy=600mJ and number of shots=500. X-ray diffraction (XRD) results reveal that the deposited (CdO)1-x(SnO2)x thin films cubic structure and the grain size increase with increasing annealing temperature and increasing concentration of SnO2. The optical transition in the (CdO)1-x(SnO2)x thin films are observed to be allowed direct transition. The value of the optical energy gap decreases with increasing of annealing temperatures and increase with increasing concentration of SnO2 for all samples.


2013 ◽  
Vol 441 ◽  
pp. 11-14
Author(s):  
Rong Bin Liu ◽  
Kai Liang Zhang ◽  
Yu Jie Yuan ◽  
Fang Wang ◽  
Juan Xu

In this paper, Al-doped ZnO thin films were deposited on glass substrates by RF magnetron sputtering and subsequently rapid thermal processing was executed under temperature range from 300°C to 600°C in order to investigate the microstructure, electrical, and optical properties of AZO films. XRD and AFM microscopy results showed that all the samples were of poly-crystalline and the grain size became larger with the increasing processing temperature. Compared with the sample as-deposited, it was shown that resistivity decreased from 1.9×10-2 to 1.48×10-3Ωcm and carrier concentration increased from 1.48×1020 to 5.59×1020 cm3 when the sample was processed at 600°C in pure nitrogen for 1 min. The highest transmittance of the samples processed at 500°C improves to 90.35% compared with the as-deposited films (68.2% ) as the wavelength varied between 400 and 900 nm.


2014 ◽  
Vol 606 ◽  
pp. 15-18
Author(s):  
Falah I. Mustafa ◽  
Mooroj Ali

InxSe1-x(x = 0.4, 0.5, 0.6) thin films are deposited at room temperature on glass substrates with thickness ~500nm by thermal evaporation technique. The X-Ray diffraction analysis showed that both the as-deposited films In2Se3and InSe (x= 0.4 and 0.5) are amorphous in nature while the as-deposited film In3Se2is polycrystalline and the values of energy gap are Eg=1.44eV for In2Se3, Eg=1.16eV for InSe and Eg=0.78eV for In3Se2. The same technique used with insert Argon gas at pressure 0.1 mbar where InxSe1-x(x = 0.4, 0.5, 0.6) thin films are deposited at room temperature on glass substrates with thickness ~100nm. The X-Ray diffraction analysis showed that the as-deposited films In2Se3are amorphous in nature while the as-deposited film InSe and In3Se2are Nanocrystalline with grain size 33nm and 55nm respectively and the values of energy gap are Eg=1.55eV for InSe and Eg=1.28eV for In3Se2. The energy gap of InSe thin films increase with Argon gas assist and phases changes from amorphous and polycrystalline to nanostructure material by thermal vacuum deposition technique.


2006 ◽  
Vol 518 ◽  
pp. 465-470 ◽  
Author(s):  
Tamara Ivetić ◽  
Maria V. Nikolić ◽  
David L. Young ◽  
Dana Vasiljević-Radović ◽  
Dragan Urošević

Thin films of single-phase zinc-stannate (Zn2SnO4) were grown by rf magnetron sputtering onto glass substrates. Transmission in the visible range was measured allowing determination of the energy gap and thickness of analyzed thin film samples using interference fringes. The photoacoustic phase and amplitude spectra of all samples were measured as a function of the laser beam modulating frequency using a transmission detection configuration. Fitting of experimental data enabled calculation of thermal diffusivity, the coefficient of minority carrier diffusion, their mobility and lifetime.


Sign in / Sign up

Export Citation Format

Share Document