The Effect of Thickness on the Properties of TGZO Thin Films for Optoelectronic Devices

2013 ◽  
Vol 734-737 ◽  
pp. 2124-2127
Author(s):  
T. Zhang ◽  
H. Wang ◽  
Z.Y. Zhong ◽  
C.Y. Yang

Titanium and gallium co-doped zinc oxide (TGZO) thin films with highly (002)-preferred orientation were grown on glass substrates by magnetron sputtering. The effect of thickness on structure and optical properties of the deposited films were investigated by X-ray diffractometer and spectrophotometer. The results show that the polycrystalline TGZO films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate, and that the thickness significantly affects the crystal structure and optical properties of the thin films. It is observed that the average transmitance in the wavelength range of the visible spectrum decreases with the increase of thickness. The TGZO thin film with about 900 nm thickness exhibits the maximum grain size, the lowest dislocation density and the minimum micro strain.

2011 ◽  
Vol 117-119 ◽  
pp. 1076-1079
Author(s):  
S.L. Wei ◽  
L.H. Zeng ◽  
Z.Y. Zhong ◽  
J.H. Gu

Aluminum-doped zinc oxide (AZO) thin films with highly (002)-preferred orientation were grown on glass substrates by rf magnetron sputtering. The effect of thickness on structural and optical characteristics of the deposited films were investigated by X-ray diffractometer and spectrophotometer. The results show that the polycrystalline AZO films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate, and that the thickness significantly affects the crystal structure and optical properties of the thin films. With the increase of thickness, the crystallite size of the films increases, the lattice spacing, dislocation density, micro strain and optical energy gap decrease, and the average transmitance in the wavelength range of the visible spectrum also slightly decreases.


2009 ◽  
Vol 68 ◽  
pp. 69-76 ◽  
Author(s):  
S. Thanikaikarasan ◽  
T. Mahalingam ◽  
K. Sundaram ◽  
Tae Kyu Kim ◽  
Yong Deak Kim ◽  
...  

Cadmium iron selenide (Cd-Fe-Se) thin films were deposited onto tin oxide (SnO2) coated conducting glass substrates from an aqueous electrolytic bath containing CdSO4, FeSO4 and SeO2 by potentiostatic electrodeposition. The deposition potentials of Cadmium (Cd), Iron (Fe), Selenium (Se) and Cadmium-Iron-Selenide (Cd-Fe-Se) were determined from linear cathodic polarization curves. The deposited films were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by x-rays (EDX) and optical absorption techniques, respectively. X-ray diffraction patterns shows that the deposited films are found to be hexagonal structure with preferential orientation along (100) plane. The effect of FeSO4 concentration on structural, morphological, compositional and optical properties of the films are studied and discussed in detail.


2014 ◽  
Vol 21 (05) ◽  
pp. 1450073 ◽  
Author(s):  
SOMAYEH AZIZI ◽  
HAMID REZAGHOLIPOUR DIZAJI ◽  
MOHAMMAD HOSSEIN EHSANI ◽  
SEYED FEYZOLAH GHAVAMI MIRMAHALLE

Cd 0.8 Zn 0.2 S thin films deposited on glass substrates by thermal evaporation method were annealed at different temperatures for the first time in order to investigate annealing effect on optical properties. The compositional, structural of nanoparticles precursor synthesized using microwave irradiation method and optical properties of the films were studied using energy dispersive X-ray (EDX), X-ray diffraction, transmission electron microscopy (TEM), and UV-visible spectrophotometer techniques. The annealed films were found to have hexagonal Wurtzite structure with strong preferential orientation along the (002) diffraction peak. Important optical parameters such as extinction coefficient and refractive index revealed the effect of heat treatment on the deposited thin layers. A reduction in the band gap energy from 2.41 eV to 2.29 eV was observed for the annealed samples.


2018 ◽  
Vol 21 (1) ◽  
pp. 015-019
Author(s):  
P. Jeyakumar ◽  
S. Thanikaikarasan ◽  
B. Natarajan ◽  
T. Mahalingam ◽  
Luis Ixtlilco

Copper Telluride thin films have been prepared on Fluorine doped Tin Oxide coated conducting glass substrates using electrodeposition technique. Cyclic voltammetric analysis has been carried out to analyze the growth mechanism of the deposited films. Thickness value of the deposited films has been estimated using Stylus profilometry. X-ray diffraction pattern revealed that the prepared films possess polycrystalline in nature. Microstructural parameters such as crystallite size, strain and dislocation density are evaluated using observed X-ray diffraction data. Optical absorption analysis showed that the prepared films are found to exhibit band gap value around 2.03 eV.


2013 ◽  
Vol 665 ◽  
pp. 93-100 ◽  
Author(s):  
T.H. Patel

SnS (tin sulphide) is of interest for use as an absorber layer and the wider energy band gap phases e.g. SnS2, Sn2S3and Sn/S/O alloys of interest as Cd-free buffer layers for use in thin film solar cells. Thin films of tin sulphide have been deposited using CBD at three different bath temperatures (27, 35 and 45 °C) onto microscope glass substrates. The X ray diffraction (XRD) analysis of the deposited films reveled that all films has orthorhombic SnS phase as dominant one with preferred orientations along (111) direction. The temperature influence on the crystalline nature and the presence of other phases of SnS has been observed. The average grain size in the films determined from Scherers formula as well as from Williamson-Hall-plot method agrees well with each other. Energy dispersive X-ray (EDAX) analysis used to determine the film composition suggested that films are almost stoichiometric. The scanning electron microscopy (SEM) reveals that deposited films are pinhole free and consists of uniformly distributed spherical grains. The optical analysis in the 200-1200 nm range suggests that direct allowed transitions are dominant in the absorption process in the films with variation in the band gap (~1.79 to ~2.05 eV) due to variation in deposition temperature.


2013 ◽  
Vol 591 ◽  
pp. 297-300
Author(s):  
Huan Ke ◽  
Shu Wang Duo ◽  
Ting Zhi Liu ◽  
Hao Zhang ◽  
Xiao Yan Fei

ZnS films have been deposited on glass substrates by chemical bath deposition (CBD). The optical and structural properties were analyzed by UV-VIS spectrophotometer and X-ray diffraction (XRD). The results showed that the prepared thin films from the solution using N2H4 as second complexing agent were thicker than those from the solution without adding N2H4 in; this is due to using second complexing agent of N2H4, the deposition mechanisms change which is conductive to heterogeneous deposition. When using N2H4 as second complexing agent, the crystallinity of ZnS thin films improved with a significant peak at 2θ=28.96°which can be assigned to the (111) reflection of the sphalerite structure. The transmittances of the prepared films from the solution adding N2H4 in as second complexing agent were over 85%, compared to those from the solution without N2H4 (over 95%). The band gaps of the ZnS films from the solution using N2H4 as second complexing agent were larger (about 4.0eV) than that from those from the solution without N2H4 (about 3.98eV), which indicated that the prepared ZnS films from the solution adding N2H4 in as second complexing agent were better used as buffer layer of solar cells with adequate optical properties. In short, using N2H4 as second complexing agent, can greatly improve the optical and structural properties of the ZnS thin films.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Reem S. Khaleel ◽  
◽  
Mustafa Sh. Hashim ◽  
Samer Gh. Majeed ◽  
◽  
...  

The deposition of metal oxides powder faces several problems, including poor adhesion to the bases deposited on them, the presence of many cracks, poor thickness control, and other disadvantages. The current study gives a new and simple idea to deposit thin films using two ZnO powders with nano and microparticle sizes on glass substrates. This was done by transforming the powders to Zinc acetate and then using chemical spray pyrolysis to deposit ZnO thin films. Scanning electron microscope (SEM) images showed that the prepared film from the nanopowder (ZnONano) lost the independence of powder’s nanoparticles and became a homogeneous film with nano projections. But the deposited one from the micro powder (ZnOMicro) had both nanorods and nanoplates. The different shapes and sizes of ZnO particles in ZnOMicro powder were disappeared after the Spray process. The two deposited films were homogeneous, crack-free and there were controllable thicknesses during the deposition. X-ray spectroscopy (EDS) was used to measure weights and atomic percentages of elements for the deposited films. The structures of the deposited films were approximately identical as the X-ray diffraction (XRD) technique showed. The optical properties of these two films were studied and their parameters were measured and calculated.


2010 ◽  
Vol 663-665 ◽  
pp. 910-913 ◽  
Author(s):  
Xing Yu Guo ◽  
Shu Ying Cheng ◽  
Pei Min Lu ◽  
Hai Fang Zhou

Ag2S thin films were fabricated on the ITO-coated glass substrates by cathodically electro-deposition from the mixture solution including 0.01mol·L-1 AgNO3 and 0.05 mol·L-1 Na2S2O3 with pH=2.5 at room temperature. The microstructure and surface morphology of the films were investigated with the deposition potential (E) varied from -0.23V to -0.28V. The X-ray diffractograms show that the deposited films are monoclinic Ag2S with the relative deviation of cell parameters within 1.5%. The estimated cell parameters of the Ag2S films deposited at E = -0.25V are closest to those of the standard sample. The SEM pictures show that films are uniform with better compactness at more negative deposition potential, but there are some aggregation when the potential up to -0.28V. According to the AFM images, the root mean square (RMS) roughness and grain size decrease with the decreasing of potential absolute value, but they will increase when the deposition potential is too small. The best potential is -0.25V for depositing Ag2S thin films.


Author(s):  
Fatma Salamon

CdS thin films were prepared by chemical bath deposition technique (CBD) onto the glass substrates at different conditions of preparation. The obtained samples are studied by X-Ray diffraction (XRD). The XRD patterns of CdS samples revealed the formation with a hexagonal crystal structure P36mc, and the clear effect of the concentration of thiourea, cadmium sulfide, NaOH, time and temperature deposition, and annealing temperature, on the structure of the prepared thin films. through the study, we found that the samples have preferred orientation along [002], also the thickness of thin films decrease with deposition time after certain value, with the appearance of free cadmium. It has been found that the 200°C is the best temperature for annealing to improve the other structural and physical properties of films.


2020 ◽  
pp. 333-340
Author(s):  
Donia Yas Khudair ◽  
Ramiz Ahmed Al Ansari

In this work, SnO2 and (SnO2)1-x(ZnO)x composite thin films with different ZnO atomic ratios (x=0, 5, 10, 15 and 20%) were prepared by pulsed laser deposition technique on clean glass substrates at room temperature without any treatment. The deposited thin films were characterized by x-ray diffraction atomic force microscope  and UV-visible spectrophotometer to study the effect of the ZnO atomic ratio on their structural, morphological and optical properties. It was found that the crystallinety and the crystalline size vary according to ZnO atomic ratio. The surface appeared as longitudinal structures which was convert to spherical shapes with increasing ZnO atomic ratio. The optical transmission and energy gap increased with increasing ZnO atomic ratio. 


Sign in / Sign up

Export Citation Format

Share Document