Microstructure and Mechanical Properties of AZ81 Alloy with Gd

2011 ◽  
Vol 117-119 ◽  
pp. 1125-1128
Author(s):  
Wei Zhou ◽  
Quanan Li ◽  
Hai Juan Kang ◽  
Qing Zhang

The effect of Gd(gadolinium) on the microstructure and mechanical properties of aged AZ81 magnesium alloy were investigated. The results showed that 2wt.%Gd addition results in the obvious refinement of grain size, the decrease of β-Mg17Al12 phase and the formation of Al2Gd phase, and improves the mechanical properties of AZ81 alloy at room and high temperature. After the addition of 2wt.%Gd, the tensile strengths are enhanced from 203.2MPa to 249.3MPa at room temperature and from 157.2MPa to 197.3MPa at 150°C. Meanwhile, the elongations are increased.

2014 ◽  
Vol 881-883 ◽  
pp. 1396-1399
Author(s):  
Chen Jun ◽  
Quan An Li

The microstructure and mechanical properties of magnesium alloy AZ61wtih1% Sn addition has been studied in this paper. The results show that the addition of 1% Sn can refine the grain size and improve the microstructure morphology of β-Mg17Al12 phase. The addition of Sn can cause the formation of Mg2Sn phase in AZ61 alloy, which can effectively enhance the mechanical properties of magnesium alloy AZ61 at room temperature and 150°C.


2011 ◽  
Vol 415-417 ◽  
pp. 1537-1544
Author(s):  
Hua Qiang Liu ◽  
Di Tang ◽  
Zhen Li Mi ◽  
Zhen Li

The grain size and the distribution of crystal orientation have an important effect on the mechanical properties of wrought AZ31B magnesium alloy sheets. Because the AZ31B magnesium alloy sheets rolled by conventional rolling have a poor formability at room temperature, a new rolling technology of differential speed rolling is used to improve the mechanical properties of AZ31B magnesium alloy. The research shows that the number of twinning crystal decreases, the number of the core of dynamically recrystallized grain increases, and the grain size become fine and isotropy by differential speed rolling with the increase of the reduction and the improving of the rolling temperature to some extent. The differential speed rolling not only improves the isotropy of the basal texture and also improves the microstructure and mechanical properties.


2014 ◽  
Vol 488-489 ◽  
pp. 154-157
Author(s):  
Lei Lei Chen ◽  
Quan An Li ◽  
Jiang Chang Xie

By the scanning electron microscopy, the microstructure and mechanical properties testing, the effect of Ca and Y on the microstructure and mechanical properties of magnesium alloy AZ81 are investigated in this paper. The results show that with Ca and Y addition, the grain size is refined. And with the β-Mg17Al12 phase reducing significantly, there will be the precipitation of Al2Ca and Al2Y. Meanwhile, the mechanical properties of AZ81 magnesium alloy are enhanced at room temperature and 150°C.


2011 ◽  
Vol 391-392 ◽  
pp. 638-641
Author(s):  
G.H. Su ◽  
Y. Sun ◽  
Zhan Yi Cao

Mg-1Mn-0.6Ce-xY (x=0, 1, 2 and 3, mass fraction, %) magnesium alloys were prepared by casting method. And the influences of yttrium on microstructure and mechanical properties of the Mg-1Mn-0.6Ce magnesium alloy were investigated. The results reveal that the addition of yttrium to the Mg-1Mn-0.6Ce alloy could reduce the grain size of the as-cast alloys and improve mechanical properties during the investigated temperature range. The Mg-1Mn-0.6Ce-1Y alloy exhibits maximum ultimate strength, yield strength, elongation and the values are 152 MPa, 72 MPa and 13.4% and enhanced about 23.1%, 63.6% and 38.1% compared with those of Mg-1Mn-0.6Ce alloy at room temperature, respectively. The improvement of mechanical properties are attributed to the grain refinement and the precipitation strengthening generated by the Mg12Ce phase particles and the fine Mg24Y5 precipitations.


2021 ◽  
Vol 1016 ◽  
pp. 906-910
Author(s):  
Xin Hua Min ◽  
Cheng Jin

In this paper,effect of the different forging processes on the microstructure and mechanical properties of the flat flat billets of TA15 titanium alloy was investigated.The flat billiets of 80 mm×150 mm×L sizes of TA15 titanium alloy are produced by four different forging processes.Then the different microstrure and properties of the flat billiets were obtained by heat treatment of 800 °C~850 °C×1 h~4h.The results show that, adopting the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling, the primary αphases content is just 10%, and there are lots of thin aciculate phases on the base. This microstructure has both high strength at room temperature and high temperature, while the properties between the cross and lengthwise directions are just the same. So the hot processing of the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling is choosed as the ideal processing for production of aircraft frame parts.


2007 ◽  
Vol 560 ◽  
pp. 29-34 ◽  
Author(s):  
Emmanuel Gutiérrez C. ◽  
Armando Salinas-Rodríguez ◽  
Enrique Nava-Vázquez

The effects of heating rate and annealing temperature on the microstructure and mechanical properties of cold rolled Al-Si, low C non-oriented electrical steels are investigated using SEM metallography and uniaxial tensile tests. The experimental results show that short term annealing at temperatures up to 850 °C result in microstructures consisting of recrystallized ferrite grains with sizes similar to those observed in industrial semi-processed strips subjected to long term batch annealing treatments. Within the temperature range investigated, the grain size increases and the 0.2% offset yield strength decreases with increasing temperature. It was observed that the rate of change of grain size with increasing temperature increases when annealing is performed at temperatures greater than Ac1 (~870 °C). This effect is attributed to Fe3C dissolution and rapid C segregation to austenite for annealing temperatures within the ferrite+austenite phase field. This leads to faster ferrite growth and formation of pearlite when the steel is finally cooled to room temperature. The presence of pearlite at room temperature decreases the ductility of samples annealed at T > Ac1.


2008 ◽  
Vol 368-372 ◽  
pp. 1730-1732 ◽  
Author(s):  
Ping Hu ◽  
Xing Hong Zhang ◽  
Jie Cai Han ◽  
Song He Meng ◽  
Bao Lin Wang

SiC whisker-reinforced ZrB2 matrix ultra-high temperature ceramic were prepared at 2000°C for 1 h under 30MPa by hot pressing and the effects of whisker on flexural strength and fracture toughness of the composites was examined. The flexural strength and fracture toughness are 510±25MPa and 4.05±0.20MPa⋅m1/2 at room temperature, respectively. Comparing with the SiC particles-reinforced ZrB2 ceramic, no significant increase in both strength and toughness was observed. The microstructure of the composite showed that the SiC whisker was destroyed because the SiC whisker degraded due to rapid atom diffusivity at high temperature. The results suggested that some related parameters such as the lower hot-pressing temperature, a short sintering time should be controlled in order to obtain SiC whiskerreinforced ZrB2 composite with high properties.


2011 ◽  
Vol 120 ◽  
pp. 475-478 ◽  
Author(s):  
Yao Gui Wang ◽  
Quan An Li ◽  
Qing Zhang

The effects of antimony on the mechanical properties of magnesium alloy ZA63 have been investigated. The results show that the addition of 0.75wt.% antimony can cause the formation of Mg3Sb2 phase and enhance the mechanical properties of magnesium alloy ZA63 at room temperature and elevated temperature.


2011 ◽  
Vol 236-238 ◽  
pp. 1939-1944
Author(s):  
Pei Qing La ◽  
Xin Guo ◽  
Yang Yang ◽  
Chun Jie Cheng ◽  
Xue Feng Lu ◽  
...  

Microstructure and mechanical properties of bulk nanocrystalline Fe3Al based alloy with 10 wt. % Mn prepared by aluminothermic reaction after annealing at 600, 800 and 1000°C for 8 h were investigated in order to gain insights in effects of annealing. Crystal structure of the alloy did not change and a fiber phase with enriched Mn appeared in the annealed alloy. Grain size of the alloy changed a little after annealing at 600°C but increased a lot after annealing at 800 and 1000°C. The annealed alloy had plasticity in compression at room temperature and the alloy annealed at 1000°C had yield strength of 782 MPa. The alloy without annealing has creep properties in compression at 800 and 1000°C and can be easily hot rolled to strip and sheet.


2018 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hansong Xue ◽  
Xinyu Li ◽  
Weina Zhang ◽  
Zhihui Xing ◽  
Jinsong Rao ◽  
...  

AbstractThe effects of Bi on the microstructure and mechanical properties of AZ80-2Sn alloy were investigated. The results show that the addition of Bi within the as-cast AZ80-2Sn alloy promotes the formation of Mg3Bi2 phase, which can refine the grains and make the eutectic phases discontinuous. The addition of 0.5 % Bi within the as-extruded AZ80-2Sn alloy, the average grain size decreases to 12 μm and the fine granular Mg17Al12 and Mg3Bi2 phases are dispersed in the α-Mg matrix. With an increase in Bi content, the Mg17Al12 and Mg3Bi2 phases become coarsened and the grain size increases. The as-extruded AZ80-2Sn-0.5 %Bi alloy has the optimal properties, and the ultimate tensile strength, yield strength and elongation are 379.6 MPa, 247.1 MPa and 14.8 %, respectively.


Sign in / Sign up

Export Citation Format

Share Document