Effect of Activating Flux and Welding Parameters on Performance of Aluminum Alloy Weldment in GTA Welding Process

2011 ◽  
Vol 117-119 ◽  
pp. 1900-1904
Author(s):  
Hsuan Liang Lin ◽  
Hung Wei Juang ◽  
Jia Ching Yan

The purpose of this work was to investigate the effect of activating fluxes and welding parameter to the penetration and depth-to-width ratio (DWR) of 6061 aluminum alloy welds. Bead-on-plate argon gas tungsten arc (GTA) welding process was made on 6061 aluminum alloy of plate without filling metals. The activating fluxes used in the experiment were CaO, ZnO, SiO2, TiO2, Al2O3, Cr2O3, CaF2 and Na2CO3. Based on the higher penetration of weld bead and welding arc voltage, four fluxes were selected to create three new mixtures using 50% of each original fluxes. The mixed fluxes were used to investigate the effect to the welding penetration. Finally, The Taguchi method was employed to achieve optimal DWR of weld bead and investigate the welding parameters that significantly affect welding quality. The experimental procedure of GTA welding with activating flux via the Taguchi method produced full penetration of weld bead on a 6.35 mm thickness of 6061 aluminum alloy plate with single pass weld.

2022 ◽  
Author(s):  
Jose Luis Meseguer Valdenebro ◽  
Eusebio José Martínez Conesa ◽  
Antonio Portoles

Abstract The aim of this work is to carry out the design of experiments that determine the influence of the welding parameters using Taguchi’s method on the grain size, HAZ, and the degree of dilution in 6063-T5 alloy. The welding process used is GMAW and the welding parameters are power, welding speed and bevel spacing. The study of the influence of the welding parameters on the measurements made in the welding (which are the size of heat affected zone, the degree of dilution, and the grain size) allows one to determine the quality of the joint . In addition, the welding parameter most influential in minimising the three measurements will be determined.


2016 ◽  
Vol 835 ◽  
pp. 161-166 ◽  
Author(s):  
Hsuan Liang Lin ◽  
Wun Kai Wang

The objective of this study is to investigate the effects of activating fluxes on the weld bead geometry, hot cracking susceptibility and mechanical property of A356 and 6061 aluminum alloy dissimilar welds in the gas metal arc (GMA) welding process. In this activated GMA welding process, there were nine single-component fluxes used in the initial experiment to evaluate the penetration capability of butt-joint GMA welds. The grey relational analysis (GRA) was employed to obtain the better weld bead geometry of welds that were considered with multiple quality characteristics. Based on higher grey relational grade (GRG), four single-component fluxes were selected to create mixed-component flux in the next stage. The experimental results showed that the GMA welds coated with activating flux were provided with better geometry of dissimilar welds. The experimental procedure of activated GMA welding process not only produced a significant increase in tensile strength of welds, but also improved the hot cracking susceptibility of aluminum alloy welds.


2021 ◽  
Author(s):  
Yue Li ◽  
Yanqiu Zhao ◽  
Xudong Zhou ◽  
Xiaohong Zhan

Abstract The simulation method in laser-MIG hybrid welding, which involves two heat sources and multiple welding parameters, is beneficial to reveal the complex physical phenomena and dynamic behavior of molten pool keyhole during welding process. In this investigation, laser-MIG hybrid welding for 6-mm-thick 6061 aluminum alloy was performed under different heat input by the high-power disc laser, MIG welding system and KUKA Robot. The high-speed camera system was used to observe the droplet transition phenomenon in the welding process. Besides, a thermal-fluid coupling model was established to simulate the temperature field and flow field, which were changed by the droplet transfer during laser-MIG hybrid welding. The experimental and simulated results showed that the droplet transition behavior affected the formation of the keyhole. The keyhole was the smallest when the droplet contacted the molten pool. In addition, the droplet transition brought external momentum and energy to the molten pool, which was conducive to the increase of the flow rate of the molten pool.


2019 ◽  
Vol 297 ◽  
pp. 51-61 ◽  
Author(s):  
Mohamed Farid Benlamnouar ◽  
Mohamed Hadji ◽  
Riad Badji ◽  
Nabil Bensaid ◽  
Taher Saadi ◽  
...  

The optimization of mechanical properties of the welded joints requires a statistical approach such as Taguchi experimental designs associated with experimental techniques and laboratory characterizations. The aim of this work is to propose a method of optimization of the mechanical performances of a TIG dissimilar welding of two grades of steels: a high strength low alloy steel X70 and an austenitic stainless steel 304L. The experimental designs were chosen according to the Taguchi method L9. The metallurgical characterization includes optical microscopy, SEM microscopy, EDX analyses and mechanical tests to establish a relationship between welding parameters, microstructures and mechanical behavior in different zones of a dissimilar weld joint. The results showed that the hardness is more strongly related to microstructural evolution than tensile strength of dissimilar joint. It was found that gas flow is the main significant TIG welding parameter affecting dissimilar weld characteristics.


2017 ◽  
Vol 17 (2) ◽  
pp. 29-40 ◽  
Author(s):  
M. A. Tashkandi ◽  
J. A. Al-Jarrah ◽  
M. Ibrahim

AbstractThe main aim of this investigation is to produce a welding joint of higher strength than that of base metals. Composite welded joints were produced by friction stir welding process. 6061 aluminum alloy was used as a base metal and alumina particles added to welding zone to form metal matrix composites. The volume fraction of alumina particles incorporated in this study were 2, 4, 6, 8 and 10 vol% were added on both sides of welding line. Also, the alumina particles were pre-mixed with magnesium particles prior being added to the welding zone. Magnesium particles were used to enhance the bonding between the alumina particles and the matrix of 6061 aluminum alloy. Friction stir welded joints containing alumina particles were successfully obtained and it was observed that the strength of these joints was better than that of base metal. Experimental results showed that incorporating volume fraction of alumina particles up to 6 vol% into the welding zone led to higher strength of the composite welded joints as compared to plain welded joints.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4157 ◽  
Author(s):  
Isidro Guzmán ◽  
Everardo Granda ◽  
Jorge Acevedo ◽  
Antonia Martínez ◽  
Yuliana Dávila ◽  
...  

Precipitation hardening aluminum alloys are used in many industries due to their excellent mechanical properties, including good weldability. During a welding process, the tensile strength of the joint is critical to appropriately exploit the original properties of the material. The welding processes are still under study, and gas metal arc welding (GMAW) in pulsed metal-transfer configuration is one of the best choices to join these alloys. In this study, the welding of 6061 aluminum alloy by pulsed GMAW was performed under two heat treatment conditions and by using two filler metals, namely: ER 4043 (AlSi5) and ER 4553 (AlMg5Cr). A solubilization heat treatment T4 was used to dissolve the precipitates of β”- phase into the aluminum matrix from the original T6 heat treatment, leading in the formation of β-phase precipitates instead, which contributes to higher mechanical resistance. As a result, the T4 heat treatment improves the quality of the weld joint and increases the tensile strength in comparison to the T6 condition. The filler metal also plays an important role, and our results indicate that the use of ER 4043 produces stronger joints than ER 4553, but only under specific processing conditions, which include a moderate heat net flux. The latter is explained because Mg, Si and Cu are reported as precursors of the production of β”- phase due to heat input from the welding process and the redistribution of both: β” and β precipitates, causes a ductile intergranular fracture near the heat affected zone of the weld joint.


2013 ◽  
Vol 789 ◽  
pp. 356-359 ◽  
Author(s):  
Ario Sunar Baskoro ◽  
A.A.D. Nugroho ◽  
D. Rahayu ◽  
Suwarsono ◽  
Gandjar Kiswanto ◽  
...  

Technology of Friction Stir Welding (FSW) as a technique for joining metal is relatively new. In some cases on Aluminum joining, FSW gives better results compared with the Arc Welding processes, including the quality of welds and less distortion. FSW can even use milling machine or drilling machine, by replacing the tools and the appropriate accessories. The purpose of this study is to analyze the effect of process parameters onmicro Friction Stir Lap Weldingto the tensile load of welds. In this case, Aluminum material A1100, with thickness of 0.4 mm was used. Tool material of HSS material was shaped with micro grinding process. Tool shoulder diameter was 3 mm, while the diameter pin was 2 mm and a length of pin was 0.7 mm. The parameter variations used in this study were the variable of spindle speed (2300, 2600, and 2900 rpm), variable oftooltilt angle(0, 1, 2 degree) and a variable ofFeed rate(50, 60, 70 mm/min). Where the variation of these parameters will affect to the mechanical properties of welds (as response) was the tensile load. Analysis and optimization parameters between the micro FSLW parameters with the tensile load of welds, is used aResponse Surface Methods(RSM). From the result of experiment and analysis, it is shown that the important welding parameter in Micro Friction Stir Lap welding process is tilt angle.


2020 ◽  
Vol 863 ◽  
pp. 85-95
Author(s):  
Truong Minh Nhat ◽  
Truong Quoc Thanh ◽  
Tu Vinh Thong ◽  
Tran Trong Quyet ◽  
Luu Phuong Minh

This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between Aluminium and steel, and (3) The welding process using stiring friction is simulated. The simulations intended to predicting the temperature which is used for preheat and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength is carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed and offset), temperature and tensile strength. The maximum tensile strength is 77% compared to the strength of aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving good quality of welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.


2014 ◽  
Vol 660 ◽  
pp. 342-346
Author(s):  
Nik Mohd Baihaki Abd Rahman ◽  
Abdul Ghalib Tham ◽  
Sunhaji Kiyai Abas ◽  
Razali Hassan ◽  
Yupiter H.P. Manurung ◽  
...  

The robot can perform Flux Cored Arc Welding (FCAW) at high productivity and consistency in quality. The quality of the welding depend on the selection of welding parameter and deposition geometry. These input has to be known before the start of production, generally the welding operator will obtain the information through experimental trial and error. This project planned to develop a tool that can advise the choice of welding parameter that produce quality weld bead with desired geometry. This research focused on the correlation of heat input on weld bead geometry and the range of welding parameter for fillet design welded in downhill direction (3F). From the correlation trend-line equations and welding parameter population boundary, the weld bead geometry and welding parameter for quality deposit are predicted. Consequently two calculators were developed to display the values digitally. The deviation of predicted bead geometry from actual welding is less than 1mm. Mean Absolute Deviation (MAD) is less than 0.4mm, accuracy is good. A wide range of welding parameters can be generated for quality welding at desired bead geometry.


2006 ◽  
Vol 505-507 ◽  
pp. 205-210
Author(s):  
Wen T. Chien ◽  
S.W. Chang

A predictive model is presented for the prediction of shear strength in laser welding AISI304 stainless steel. Welding experiments conducted using a pulsed Nd:YAG laser machine while the laser welding parameters and their levels have been arranged according to design of experiments of Taguchi method. The tensile tests are performed after welding and the measurements of tensile strength are further calculated for shear strength. The data can be analyzed using the principles of Taguchi method for determining the optimal laser welding parameters and for investigating the most significant laser welding parameter on shear strength. Furthermore, the results are treated as the training and recalling patterns for constructing a predictive model using back-propagation neuron network to predict shear strength for the range of laser welding operation tested. It is indicated that welding speed is the most significant affecting parameters on shear strength. In addition, an increase in welding speed causes a decrease in shear strength is found. An average error 5.75%for shear strength can be found by comparing the experimental results obtained from conducting verification tests with the predicting values obtained from the established predictive model. It shows that the predictive model is capable of good predicting behavior of laser welding AISI304 stainless steel.


Sign in / Sign up

Export Citation Format

Share Document