Research on the Moisture Damage Occurred on the Asphalt Pavement

2012 ◽  
Vol 178-181 ◽  
pp. 1117-1124 ◽  
Author(s):  
Chuan Qin Pang

Water is an important reason lead to the moisture damage on the asphalt pavements. In the paper, investigations and tests indicate that the poor permeability of the asphalt layer when the road opening to the traffic is a very common defect nowadays. The permeability would decrease under the hydraulic and air pressure resulted by moving vehicles, the water would directly penetrate the asphalt layer and accumulate at the interface betweens different layers. The precipitation water could also enter the pavement through the cracks and central separation belt, and accumulate as well, which lead to the development of moisture damage occurred at the bottom and upward subsequently. The intrude water also causes moisture failures in the base as well as the asphalt layer.

2014 ◽  
Vol 617 ◽  
pp. 29-33 ◽  
Author(s):  
Jozef Melcer

Asphalt pavements are the transport structures subjected to dynamic effect of moving vehicles. Many effects influence the real values of vehicle tire forces. Road unevenness represents the most important factor influencing the magnitudes of tire forces. Such data can be obtained by numerical or experimental way. The paper deals with the numerical simulation of moving load effect on asphalt pavements and with numerical simulation of tire forces in relation to the road unevenness.


2021 ◽  
Vol 4 (6) ◽  
Author(s):  
Zecheng Ni ◽  
Shijing Chen ◽  
Yihuan Li ◽  
Hongxi Peng ◽  
Jiawen Liang ◽  
...  

The early asphalt pavement in our country severely reduced the road performance due to various external factors during the use process. According to incomplete statistics, there are more asphalt pavements that need to be renovated and repaired every year in China, and the amount of construction waste such as asphalt concrete and other construction waste reaches 1,000. About ten thousand tons. If such a huge amount of construction waste is not used, it will inevitably cause great pollution to the environment. If it can be reused, not only will it be environmentally friendly and energy-saving, it will also save more than one billion yuan in costs. In view of the above problems, this article conducts related Research and Analysis on the Principle in Plant Cold Recycling for Foamed Bitumen and Mixture Performance to provide reference for future projects.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5523
Author(s):  
Jingsheng Pan ◽  
Hua Zhao ◽  
Yong Wang ◽  
Gang Liu

The influence of sand accumulation on the skid resistance of asphalt pavement was studied. Many scholars have researched the anti-skid performance of conventional asphalt pavements. However, there is a lack of research on the anti-skid performance of desert roads under the condition of sand accumulation. In this study, AC-13 and AC-16 asphalt mixtures were used. The British Pendulum Number (BPN) under different sand accumulations was measured with a pendulum friction coefficient meter, and the Ames engineering texture scanner was used to obtain different sand accumulations. The texture index of asphalt mixture was used to study the macro and micro texture of asphalt pavement under different amounts of sand accumulation, and the degree of influence of different particle sizes on BPN was obtained through gray correlation analysis. The test results show that the presence of aeolian sand has a significant impact on the macro and micro texture of the asphalt pavement and will cause the anti-skid performance to decrease. Moreover, there is an apparent positive linear correlation between the road surface texture index and BPN. The research results may provide reference and reference for the design and maintenance of desert highways.


Author(s):  
Momen R. Mousa ◽  
Mostafa A. Elseifi ◽  
Zhongjie Zhang ◽  
Kevin Gaspard

Crack sealing prevents the ingress of water in the pavement structure, thus preventing the weakening of the pavement and delaying its deterioration. Earlier studies indicate that sealing pavements in areas with a high ground water table (GWT) may prevent moisture from escaping upwards through cracks in asphalt pavements, therefore, accelerating stripping. The objective of this study was to provide guidelines for using crack sealing to minimize moisture entrapment under cracks, thus reducing stripping on low volume roadways. To achieve this, a calibrated Finite Element (FE) model was used to model a field experiment consisting of cracked and crack-sealed asphalt pavement sections. Sensitivity analysis was then conducted to compare crack-sealed and unsealed sections under different GWT levels, air relative humidity, air temperatures, rain intensities, and asphalt hydraulic conductivities. Results indicate that crack sealing could be applied under common rain intensities in Louisiana and any GWT depth without potential for stripping because of moisture entrapment if the hydraulic conductivity of the original pavement does not exceed 2 × 10–6 m/s. Yet, crack sealing should be applied after a dry period to ensure that the existing moisture in the original pavement is minimal. A non-linear regression model was developed for use in the Southern United States to help determine whether crack sealing should be used to avoid moisture damage in a cracked pavement at a given site based on the GWT and air relative humidity without the need for FE simulations. This can be a useful tool when planning maintenance activities.


2012 ◽  
Vol 232 ◽  
pp. 874-877
Author(s):  
Bao Feng Pan ◽  
Yan Wang

The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements. The saturated asphalt pavement is modelled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7805
Author(s):  
Dae-Seong Jang ◽  
Sang-Hoon Kim ◽  
Young Kim ◽  
Jae-Jun Lee ◽  
Deok-Soon An

Harmful nitrogen oxides (NOX) are produced by vehicles, factories, mines, and power plants. In fact, over one million tons of NOX are emitted into the atmosphere every year, making it the most prevalent air pollutant. Approximately 45% of the emitted NOX in Korea is associated with the transportation sector. In this paper, the application of a new TiO2 photocatalyst on the asphalt roads to remove combustion-produced NOX was studied. In an effort to overcome the known constructability, adhesion, cost, and dispersion problems associated with TiO2 photocatalysts, the liquid polyurethane (PUD) was added with TiO2 to form a mixture later known as liquid PUD-TiO2. Laboratory and field tests were conducted to determine the optimum amount of photocatalyst to be used and the performance of asphalt pavement coated with PUD-TiO2 in terms of indirect tensile strength, water susceptibility, and rutting resistance. Additionally, the performance of PUD-TiO2 under different humidity, wind speed, and temperature conditions was also evaluated. The results showed that the application of PUD-TiO2 photocatalyst on the asphalt pavements road reduces the NOX available on the surface of the road. The PUD-TiO2 also was found to have no effects on the performance of asphalt pavement. Meanwhile, under different weather conditions, the reaction between the photocatalyst and NOX is mainly affected by the humidity.


2021 ◽  
Vol 13 (6) ◽  
pp. 3315
Author(s):  
Mansour Fakhri ◽  
Danial Arzjani ◽  
Pooyan Ayar ◽  
Maede Mottaghi ◽  
Nima Arzjani

The use of waste materials has been increasingly conceived as a sustainable alternative to conventional materials in the road construction industry, as concerns have arisen from the uncontrolled exploitation of natural resources in recent years. Re-refined acidic sludge (RAS) obtained from a waste material—acidic sludge—is an alternative source for bitumen. This study’s primary purpose is to evaluate the resistance of warm mix asphalt (WMA) mixtures containing RAS and a polymeric additive against moisture damage and rutting. The modified bitumen studied in this research is a mixture of virgin bitumen 60/70, RAS (10, 20, and 30%), and amorphous poly alpha olefin (APAO) polymer. To this end, Marshall test, moisture susceptibility tests (i.e., tensile strength ratio (TSR), residual Marshall, and Texas boiling water), resilient modulus, and rutting assessment tests (i.e., dynamic creep, Marshall quotient, and Kim) were carried out. The results showed superior values for modified mixtures compared to the control mix considering the Marshall test. Moreover, the probability of a reduction in mixes’ moisture damage was proved by moisture sensitivity tests. The results showed that modified mixtures could improve asphalt mixtures’ permanent deformation resistance and its resilience modulus. Asphalt mixtures containing 20% RAS (substitute for bitumen) showed a better performance in all the experiments among the samples tested.


2011 ◽  
Vol 59 (2) ◽  
pp. 137-140 ◽  
Author(s):  
S. Szczepański ◽  
M. Wöjcikowski ◽  
B. Pankiewicz ◽  
M. KŁosowski ◽  
R. Żaglewski

FPGA and ASIC implementation of the algorithm for traffic monitoring in urban areas This paper describes the idea and the implementation of the image detection algorithm, that can be used in integrated sensor networks for environment and traffic monitoring in urban areas. The algorithm is dedicated to the extraction of moving vehicles from real-time camera images for the evaluation of traffic parameters, such as the number of vehicles, their direction of movement and their approximate speed. The authors, apart from the careful selection of particular steps of the algorithm towards hardware implementation, also proposed novel improvements, resulting in increasing the robustness and the efficiency. A single, stationary, monochrome camera is used, simple shadow and highlight elimination is performed. The occlusions are not taken into account, due to placing the camera at a location high above the road. The algorithm is designed and implemented in pipelined hardware, therefore high frame-rate efficiency has been achieved. The algorithm has been implemented and tested in FPGA and ASIC.


2011 ◽  
Vol 194-196 ◽  
pp. 1632-1638
Author(s):  
Hong Liang Deng ◽  
Xiao Yin Fu ◽  
Wen Xue Gao ◽  
Ting Ting Ni ◽  
Kai Jiang Chen

The methods of controlling Highway semi-rigid base asphalt pavement cracks and other diseases are always hot fields of road engineering and academic circles. The existing methods are on some degree efficient on delaying the formation and extension of cracks, but the effect is limited with different methods and various mechanisms of preventing cracks. Base on force analysis of pavement, this article presents a new technology of crack controlling which uses intelligent composite materials interlayer. By adding a stress absorbing layer between the asphalt surface layers or the semi-rigid base layers with low modulus, good toughness, self-adaptability and self-control ability, the intelligent composite materials interlayer has a good effect on controlling cracks which has been proved by the theoretical calculations and experimental analysis. As a result, the intelligent composite materials interlayer could efficiently prevent and delay the formation and extension of cracks, the safety and comfort of highway could be improved significantly while the cost of construction and maintenance decreasing. And the service level and social image of the road could also be improved effectively. This research has important academic and application value.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Dongliang He ◽  
Weijun Yang

This study uses a test section of a highway, a study object, to explore the effect of thickness of the gravel base and asphalt layer on the vertical deformation of the road surface. The thickness of the asphalt layer and graded gravel base is changed. The nonlinear description equation of the relationship between the thickness (h1) of the asphalt layer and the vertical deformation (d1) is established: d1=a41−b4h1. The thickness of the asphalt pavement is then determined to reduce vertical deformation. Numerical calculation shows that the maximum vertical deformation of the foundation is within 8 mm, which is less than the 15 mm maximum vertical deformation of the embankment. This level meets the design requirements.


Sign in / Sign up

Export Citation Format

Share Document