The Numerical Simulation Research of Spiral Solid-Liquid Separators

2012 ◽  
Vol 229-231 ◽  
pp. 1729-1732
Author(s):  
Yue Juan Yan ◽  
Zun Ce Wang ◽  
Sen Li ◽  
Xu Yan

In water production-reinjection system, a spiral solid-liquid separator is installed at the inlet of the electric submersible pump (ESP) to prevent solid materials in the re-injected water from plugging formation pore and keep the efficiency of water injection. In order to determine optimum structural parameters and operating parameters of the separator, numerical simulation was conducted to analysis the effect of spiral laps, spiral pitch, inlet velocity, etc. on separation properties. By analysis and comparison, spiral laps of 5, pitch of 18 mm are the most suitable structure parameters. In operating parameters, the pressure drop and separation efficiency increase with the inlet velocity increasing. The results provide reference for further research of the spiral solid-liquid separators.

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Bing Liu ◽  
Huajian Wang ◽  
Luncao Li ◽  
Zhenjiang Zhao ◽  
Liping Xu ◽  
...  

In this work, based on the Reynolds stress model (RSM) of the computational fluid dynamics (CFD) software Fluent and experimental method, the velocity field, pressure characteristics, split ratio, and separation efficiency of the hydrocyclone are analyzed under different gas-liquid ratios (GLRs). For the inlet velocity, the lower limit is ascertained by the flow field stability, the upper limit is largely determined by the energy consumption, and the optimum range is 4 m/s to 10 m/s. Within the optimum range, the peak value of tangential velocity increases while the GLR increases, whereas the pressure and pressure drop decrease. With the increase in the GLR, the axial velocity decreases, and the locus of zero vertical velocity shifts inward. The increase in the GLR causes more gas to collect at the vortex finder, which hinders the discharge of the solid-liquid mixture from the overflow, and the larger the GLR, the faster the decrease in the split ratio. The separation efficiency of particles with a particle size of 15 μm is increased by 6.75%, and the separation efficiency of particles with a particle size of 30 μm is increased by 0.57%. Meanwhile, the separation efficiency is increased by 2.43%, and the cut size d50 is reduced as the GLR increases.


2011 ◽  
Vol 415-417 ◽  
pp. 1516-1520
Author(s):  
Xue Ping Wang ◽  
Zhen Wei Zhang

This paper mainly focuses on the numerical simulation of the gas flow field of cyclone separator. The authors took advanced of RSM turbulence model of software Fluent to simulate the gas field. The regulations among structure parameter of exhaust pipe, pressure lose and separation efficiency can be obtained according to the numerical simulation results under the situation of changing the structural parameters. The conclusion of this paper can put forward the theoretical reference for the structure optimization of cyclone separation.


2012 ◽  
Vol 562-564 ◽  
pp. 1606-1609
Author(s):  
Si Huang ◽  
Yue Le ◽  
Luo Li

This paper presents a numerical simulation and experimental study on a solid-liquid hydrocyclone. In the simulation, the standard k-ε turbulence model and the zero-equation model are employed to compute the flow field of the two phases in the hydrocyclone under different conditions, such as viscosity of the liquid, particle size and flow rate. In the experiment, a hydrocyclone is manufactured and measured for the separation efficiency and pressure drop in the test system. The simulation result of hydrocyclone performance matches well with the experimental data.


2013 ◽  
Vol 634-638 ◽  
pp. 1655-1658
Author(s):  
Qiu Bo Huang ◽  
Qing Jie Liu ◽  
Sheng Ju Zang

The separation efficiency, separation factor, flow and other parameters are closely related in terms of horizontal spiral sedimentation centrifuge. This article takes lwb350 horizontal spiral sedimentation centrifuge for example, with the help of FLUENT software, the relationship among the separation efficiency and the working speed as well as feed flow is analyzed through the numerical simulation of solid-liquid separation, which can provide reference for the application of simulation analysis and research on properties of spiral centrifuge.


2014 ◽  
Vol 933 ◽  
pp. 434-438
Author(s):  
Yue Juan Yan ◽  
Yan Xu Shang ◽  
Zun Ce Wang ◽  
Mi Tian ◽  
Yue Wang

A new downhole hydrocyclone desander with spiral deflector and cyclone cone was designed to apply in downhole solid-liquid separation according to the downhole operating conditions, such as a high produced liquid viscosity, narrow radial working space and closed bottom flow, etc. The structure parameters were designed primarily based on the effect of structure size on pressure drop, production capacity and separation efficiency. Numerical simulation was conducted on the base of Mixture model and Reynolds stress (RSM) turbulent model by Fluent CFD software. The geometrical model of single inlet and single outlet was established. The simulation calculations were carried out to analysis the effect of structure parameters change on separation efficiency and pressure drop, obtained the influence rules. The optimum structural parameters were confirmed. The numerical simulation results lay the foundation for the next experimental study.


2013 ◽  
Vol 411-414 ◽  
pp. 3121-3124
Author(s):  
Guo Liang Song ◽  
Cheng Li Zhang ◽  
Chun Yan Li ◽  
Jian Zhang

Based on the characteristics of low permeability, low pressure, poor effect of conventional waterflood development and low recovery efficiency in Chao Yanggou oilfield, advanced water injection is applied. Taking the Chang 10th block of Chao Yanggou oilfield as an example, the research on reasonable production time and pressure limit of advanced water injection in low permeability oilfield are carried out using methods of numerical simulation and reservoir engineering. The result shows that the average permeability of the Chang 10th block is 7.0×10-3μm2, the reasonable time of advanced water injection is about 6 months, and the recovery efficiency increases 2.26% compared with synchronized water injection. The successful application of advanced water injection development technology has some guidance on low-permeability oilfield development.


2012 ◽  
Vol 516-517 ◽  
pp. 1062-1065
Author(s):  
Zhen Wang ◽  
Ming Hu Jiang ◽  
Ping Tao Hou ◽  
Qing Jiao Sheng ◽  
Li Xin Zhao

A model of coalescing helical pipe is established through the analysis to the oil phase in continuous water phase inside a helical pipe, by using Fluent software. The influence of structural parameters and operation parameters of helical pipes on oil droplet coalescing effect is verified. Results show that the oil drop coalescing effect increases with the rise of gyration radius and number of turns of helical pipe, and decreases with the rise of the helical pipe diameter and inlet velocity.


2011 ◽  
Vol 422 ◽  
pp. 794-798
Author(s):  
Xue Ping Wang ◽  
Ying Zhang ◽  
Ju Guang Xue ◽  
Zhen Wei Zhang

The numerical simulation can be obtained by taking advantage of turbulence model of Fluent to study the gas-solid flow field of cyclone separator. The pressure of the cyclone drops increases with the enhancement of the inlet flow velocity, and the increase amplitude can become larger and larger. The separation efficiency of the cyclone enhances gradually as the increase of the flow. The increase amplitude of small and secondary particles is much lager compared with the increase amplitude of big ones. The overall separation efficiency can strengthen gradually with increasing of particles concentration as well as the each part’s efficiency. But the separation efficiency will stay in stable level when the concentration reaches a certain value with the big particles in the low concentration and small ones in a relatively high concentration.


2011 ◽  
Vol 354-355 ◽  
pp. 385-388
Author(s):  
Ying Jie Liu ◽  
An Guo Xie ◽  
Feng Liu ◽  
Zi Qiang Lv

Use the method of Numerical simulation to different operating parameters and structural parameters of blast air swirl burner . On the basis of it, several evaluation indicators of swirl burners were proposed.


Sign in / Sign up

Export Citation Format

Share Document