Properties of Thermal Conductivity on Polyimide/Clay Nanocomposite Foams

2012 ◽  
Vol 229-231 ◽  
pp. 215-218
Author(s):  
Eunk Young Kim ◽  
Seung Yong Jeong ◽  
Gyo Jic Shin ◽  
Sang Kug Lee ◽  
Kyung Ho Choi

We synthesized polyimide (based on ODA-PMDA) and polyimide foam and polyimide/clay foam that pore size was uniform about 1㎛. We identified that the clay layers are well dispersed in polyimide matrix and achieved exfoliation structure by X-ray diffraction. And we compared thermal conductivity of PI, PI foam, PI/clay foam. Thermal conductivity decreased up to maximum 28 % by introducing both pores and clay layers. Exfoliated structure of clay leads to decrease of thermal conductivity by thermal barrier effect. Also, the presence of clay could considerably reinforce the poor mechanical properties of polyimide by foam because of interfacial interaction between clay layers and polymer matrix. Through the this results, it has shown that this study may provide an effective method to prepare polymer/clay nanocomposite foams having exfoliation structure, and can be used as insulating material having low thermal conductivity.

2007 ◽  
Vol 336-338 ◽  
pp. 1764-1766 ◽  
Author(s):  
Ye Xia Qin ◽  
Jing Dong Wang ◽  
Wei Pan ◽  
Chun Lei Wan ◽  
Zhi Xue Qu

This paper summarizes the basic properties of a series of rare-earth zirconate ceramics (Gd2Zr2O7, Sm2Zr2O7, Dy2Zr2O7, Er2Zr2O7 and Yb2Zr2O7). The phases and microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Thermal properties of these materials were determined. The results indicated that Sm2Zr2O7 rare-earth zirconate ceramics have the lower thermal conductivity and the highest thermal expansion coefficient than other rare-earth zirconate ceramics. The dielectric constant decreases with the increase of atomic number.


Author(s):  
M. Noor-A-Alam ◽  
A. R. Choudhuri ◽  
C. V. Ramana

Yttria-stabilized hafnia (YSH) coatings were grown onto stainless steel 403 (SS-403) and Si substrates. The deposition was made at various growth temperatures ranging from room temperature (RT) to 500 °C. The microstructure and thermal properties of the YSH coatings were evaluated employing grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and photoacoustic measurements. GIXRD studies indicate that the coatings crystalize in cubic structure with a (111) texturing. Well-grown triangular dense morphology was evident in SEM data. EDS analysis indicates the composition stability of YSH coatings. The grain size increases with the increasing growth temperature. Thermal conductivity measurements indicate lower thermal conductivity of YSH coatings compared to either pure hafnia or yttria-stabilized zirconia.


2010 ◽  
Vol 74 ◽  
pp. 38-47
Author(s):  
Clay Mortensen ◽  
Paul Zschack ◽  
David C. Johnson

The evolution of designed [(Ti-Te)]x[(Sb-Te)]y, [(Bi-Te)]x[(Sb-Te)]y, [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]y and [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors were followed as a function of annealing temperature and time using both low and high angle x-ray diffraction techniques to probe the self assembly into nanolaminate materials. The [(Bi-Te)]x[(Sb-Te)]y precursors were found to interdiffuse at low temperatures to form a (BixSb1-x)2Te3 alloy. The [(Ti-Te)]x[(Bi-Te)]y and [(Ti-Te)]x[(Sb-Te)]y precursors formed ordered nanolaminates [{(TiTe2)}1.35]x[Bi2Te3]y and [{(TiTe2)}1.35]x[Sb2Te3]y respectively. The [(Ti-Te)]w[(Bi-Te)]x[(Sb-Te)]x precursors formed [{(TiTe2)}1.35]w[(Bi0.5Sb0.5)2Te3]2x nanolaminates on annealing, as the bismuth and antimony layers interdiffused. Over the range of TiTe2 thicknesses used in [(Ti-Te)]w[(Bi-Te)]x[(Ti-Te)]y[(Sb-Te)]z precursors, Bi and Sb were found to interdiffuse through the 2-4 nm thick Ti-Te layers, resulting in the formation of (BixSb1-x)2Te3 alloy layers as part of the final nanolaminated products. When the Bi-Te and Sb-Te thicknesses were equal in the amorphous precursors, symmetric [{(TiTe2)}1.35]m[(Bi0.5Sb0.5)2Te3]n nanolamiantes were formed. When the thicknesses of Bi-Te and Sb-Te layers were not equal in the amorphous precursor, asymmetric [(TiTe2)1.35]m[(BixSb1-x)2Te3]n[(TiTe2)1.35]m[(BixSb1-x)2Te3]p nanolaminates were formed. These results imply that to form (A)w(B)x(C)y nanolaminates using designed layered precursors all three components must be immiscible. To form (A)x(B)y(A)x(C)z nanolaminates, the components must be immiscible or the precursor to the A component and the A component itself must be an effective interdiffusion barrier preventing B and C from mixing.


2012 ◽  
Vol 512-515 ◽  
pp. 158-161 ◽  
Author(s):  
Ling Dai ◽  
Qiang Xu ◽  
Shi Zhen Zhu ◽  
Ling Liu

As a new candidate material for the ceramic layer in thermal barrier coatings (TBCs) system, La3NbO7 was synthesized with La2O3 powder and Nb2O5 powder by solid state reaction. The stating powders with a mole ratio of La to Nb of 3:1 were mixed and then the mixture was calcined under the different temperatures(800°C, 1000°C, 1200°C) and dwell times(2h, 6h, 10h). The phase structure of the powder was observed by X–ray diffraction(XRD), and the microstructure of the sample was observed by scanning electron microscope(SEM). The effect of calcination temperature and dwell Time on the phase formation were examined. The results indicate that the La3NbO7 powder with single phase can be synthesized successfully at 1200°C for 10h in air, and the La3NbOsub>7 powders synthesized have an ultra-fine particle size of 0.5˜1µm with a granular particle shape. With the temperature increasing, LaNbO4/sub> was synthesized firstly and then La3NbO7 was synthesized with a mole ratio of La2O3 to LaNbO4 of 1:1.


MRS Advances ◽  
2016 ◽  
Vol 1 (22) ◽  
pp. 1631-1636 ◽  
Author(s):  
Boya Cui ◽  
D. Bruce Buchholz ◽  
Li Zeng ◽  
Michael Bedzyk ◽  
Robert P. H. Chang ◽  
...  

ABSTRACTThe cross-plane thermal conductivities of InGaZnO (IGZO) thin films in different morphologies were measured on three occasions within 19 months, using the 3ω method at room temperature 300 K. Amorphous (a-), semi-crystalline (semi-c-) and crystalline (c-) IGZO films were grown by pulsed laser deposition (PLD), followed by X-ray diffraction (XRD) for evaluation of film quality and crystallinity. Semi-c-IGZO shows the highest thermal conductivity, even higher than the most ordered crystal-like phase. After being stored in dry low-oxygen environment for months, a drastic decrease of semi-c-IGZO thermal conductivity was observed, while the thermal conductivity slightly reduced in c-IGZO and remained unchanged in a-IGZO. This change in thermal conductivity with storage time can be attributed to film structural relaxation and vacancy diffusion to grain boundaries.


Author(s):  
Adolfo Quiroz-Rodríguez ◽  
Cesia Guarneros-Aguilar ◽  
Ricardo Agustin-Serrano

In this research, it is presented a detailed study of the structural and thermoelectric properties of the pyrochlore zirconium Pr2Zr2O7 compound prepared by solid-state reaction (SSR) in air at ambient pressure. The synthesized sample was characterized using powder X-ray diffraction. The thermal stability of the thermoelectric compound (TE) Pr2Zr2O7 was tested by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Scanning electron microscopy shows that the crystal size varies between 0.69 and 2.81μm. Electrical conductivity (\sigma) of the sample calcined at 1400 °C presented values increase irregularly with the increasing temperature from 0.001 to 0.018 S cm-1 as expected in a semiconductor material. The thermal conductivity is lower than 0.44 - 775 W m-1 K-1 which is quite anomalous in comparison with the thermal conductivity of other oxides.


2013 ◽  
Vol 743-744 ◽  
pp. 120-125
Author(s):  
Zhen Chen ◽  
Ye Mao Han ◽  
Min Zhou ◽  
Rong Jin Huang ◽  
Yuan Zhou ◽  
...  

In the present study, the glass microsphere dispersed Bi-Sb thermoelectric materials have been fabricated through mechanical alloying followed by pressureless sintering. The phase composition and the microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. Electrical conductivity, Seebeck coefficient and thermal conductivity were measured in the temperature range of 77~300 K. The ZT values were calculated according to the measurement results. The results showed that the electrical conductivity, Seebeck coefficient and thermal conductivity decreased by adding glass microsphere into Bi-Sb thermoelectric materials. However, the optimum ZT value of 0.24 was obtained at 260 K, which was increased 10% than that of the Bi-Sb matrix. So it is confirmed that the thermoelectric performance of Bi-Sb-based materials can be improved by adding moderate glass microspheres.


2020 ◽  
Vol 53 (6) ◽  
pp. 1542-1549
Author(s):  
Yuichi Michiue ◽  
Hyoung-Won Son ◽  
Takao Mori

A unified structure model in (3 + 1)-dimensional superspace proved suitable for identification of a homologous phase (Ga1−αAlα)2O3(ZnO) m by the profile fitting of powder X-ray diffraction intensities for thermoelectric composite materials in the pseudoternary system ZnO–Al2O3–Ga2O3. A homologous compound of the phase parameter m ≃ 37 was found to coexist with (Al,Ga)-doped ZnO in samples sintered at 1723 K in air. The thermoelectric properties of the composite materials were closely related to the phase fractions. The higher the phase fraction of (Al,Ga)-doped ZnO with the wurtzite structure, the higher the electrical conductivity. On the other hand, the homologous compound with the long-period structure was effective in lowering the thermal conductivity of the materials.


2014 ◽  
Vol 492 ◽  
pp. 361-364
Author(s):  
Yi Wang ◽  
Li Jia Chen ◽  
Hong Li Suo ◽  
Yi Chen Meng

A modified YSZ thermal barrier coating (TBC) was prepared by simultaneously depositing two components, NiCrAlY and YSZ, on nicked-based superalloy DZ125 via atmospheric plasma spraying. In this study, the sodium salt was deposited on substrate surface at the deposition rate of 3 mg/cm-2. After being heated at 950 °C for 50min, the specimens were cooled to ambient temperature within 10 min. The specimens were recoated after each 10 cycles. Subsequently, the corrosion products were analyzed via X-Ray diffraction and SEM. The results indicated that deterioration of traditional YSZ coating mainly resulted from the fluxing of thermal grown oxides (TGO). Conversely, abnormal growth of TGO and enrichment of molten salt around segmentation crack were not observed in the modified YSZ thermal barrier coating. Moreover, the modified YSZ-TBC exhibited higher thermal resistance than traditional YSZ-TBC in the thermal cycling testing.


2013 ◽  
Vol 361-363 ◽  
pp. 682-685
Author(s):  
Chao Qian ◽  
Wen Yuan Gao ◽  
Chun Yuan Luo ◽  
Li Dong Tuo ◽  
Hai Yuan Li ◽  
...  

Insulation materials with flexural strength 5.238 MPa and porosity 39.24% obtained at 1050 °C for 0.5 h show that its bulk density of the materials decreased down to 1.252 g/cm3using clay as aggregate. Due to change the amount of sugar filter mud, the porosity arises from 37.07% to 39.24% and the thermal conductivity decreases from 0.086 to 0.052 W·m-1·K-1. The clay and wastes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and chemical elemental analysis. The main crystalline phases of sample observed by XRD are quartz, mullite and anorthite. The insulation materials were manufactured from clay and the optimal proportion of wastes.


Sign in / Sign up

Export Citation Format

Share Document