Effect of Strain-Rate on Flexural Behavior of Composite Sandwich Panel

2012 ◽  
Vol 229-231 ◽  
pp. 766-770 ◽  
Author(s):  
Behzad Abdi ◽  
S.S.R. Koloor ◽  
M.R. Abdullah ◽  
Ayob Amran ◽  
Mohd Yazid bin Yahya

In the past few decades, Composite Sandwich Panel (CSP) technology significantly influenced the design and manufacturing of high performance structures. Although using CSP increases the reliability of structure, the important concern is to understand the complex deformation and damage evolution process. This study is focused on the mechanical behaviour of CSP under flexural loading condition. A setup of three-point bending test is prepared using three support span of 40, 60 and 80 mm. The loading was controlled by three different displacement rates of 1, 10 and 100 mm per minute to examine the effects of strain-rate on bending behaviour of CSP material. The beam span significantly affects the flexural stiffness of CSP panel. The load-deflection response of the panel shows two different portions, that representing equivalent elastic and plastic regions in both the core and facesheets components of CSP. The non-combustible mineral-filled core appears to be nonlinear in the elastic region, at high loading rate. Consequently the failure occurs as the core/facesheets interface suffers debonding.

2013 ◽  
Vol 845 ◽  
pp. 436-440 ◽  
Author(s):  
A. Shah ◽  
S. Izman ◽  
Mohammed Rafiq Abdul Kadir ◽  
H. Mas-Ayu ◽  
Mahmood Anwar ◽  
...  

Recently, Composite Sandwich Panel (CSP) technology considerably influenced the design and fabrication of high performance structures. Although using CSP increases the reliability of structure, the important concern is to understand the complex deformation and damage evolution process. This study is focused on the flexural and indentation behavior of CSP made of chopped strand mat glass fiber and polyester matrix as face sheets and polyurethane foam as foam core subject to flexural and indentation loading condition. A setup of three-point bending and indentation test is prepared using different strain rates of 1mm/min, 10mm/min, 100mm/min and 500mm/min to determine the effects of strain rate on flexural and indentation behavior of CSP material. The load-extension, stress-extension response and energy absorption of the panel show the relation between the flexural and indentation behavior of panels to strain rate as by increasing the strain rate, the flexural properties and the energy absorption of panel are increased.


2013 ◽  
Vol 845 ◽  
pp. 320-323
Author(s):  
Syed Azwan ◽  
Behzad Abdi ◽  
Yahya Mohd Yazid ◽  
Ayob Amran

Recently, Composite Sandwich Panel (CSP) technology considerably influenced the design and fabrication of high performance structures. Although using CSP increases the reliability of structure, the important concern is to understand the complex deformation and damage evolution process. This study is focused on the flexural and indentation behavior of CSP made of chopped strand mat glass fiber and polyester matrix as face sheets and polyurethane foam as foam core subject to flexural and indentation loading condition. A setup of three-point bending and indentation test is prepared using different strain rates of 1mm/min, 10mm/min, 100mm/min and 500mm/min to determine the effects of strain rate on flexural and indentation behavior of CSP material. The load-extension, stress-extension response and energy absorption of the panel show the relation between the flexural and indentation behavior of panels to strain rate as by increasing the strain rate, the flexural properties and the energy absorption of panel are increased.


Author(s):  
M.R. Ashok ◽  
M. Manojkumar ◽  
P.V. Inbanaathan ◽  
R. Shanmuga Prakash

This paper details the fabrication and flexural testing of sandwich structure with Aluminium honeycomb core with Aluminium face skins. The material for the face skin is aluminium 1100 and for the core is Aluminium AA8011. The cell size obtained by fabrication is 7mm. The specimen is prepared and tested as per the ASTM standard C393/C393M-11 on a three-point bending test to obtain the ultimate core shear strength and the face skin strength. Finite element analysis is also carried out to validate the experimental test.


1980 ◽  
Vol 47 (2) ◽  
pp. 383-388 ◽  
Author(s):  
K. Kemmochi ◽  
T. Akasaka ◽  
R. Hayashi ◽  
K. Ishiwata

In this paper, a modified theory based upon Reissner’s procedure for the shear-lag effect of the sandwich panel is presented, which includes the effects of the anisotropy of the faces and the shearing rigidity of the core. In order to verify this theory, bending experiments were performed with sandwich panels composed of a soft core, stiffeners, and orthotropic faces. It was found that the effective bending rigidity calculated from this theory was lower than that derived from the classical bending theory and that the theoretical strain distribution on the faces agreed well with the experimental results.


2017 ◽  
Vol 6 (2) ◽  
pp. 276-284
Author(s):  
Shuliang Cheng ◽  
Xuya Zhao ◽  
Xiaoman Liu ◽  
Wei Yu ◽  
Yajun Xin

The selection of reliable technique for damage assessment is important in civil engineering structure. The present study proposed Acoustic emission (AE) technique by using the fundamental AE parameter to evaluate damage accumulated on Ultra High-Performance Concrete (UHPC) specimens. The UHPC beam with dimension of 515 mm x 98 mm x 98 mm was tested under three-point bending test with stepwise flexural load. In order to detect and to collect the AE data, Micro-SAMOS (μ-SAMOS) digital AE system and R6I sensors type were used while data analyses were carried out using AEwin software. The damage level that take place during increasing static loading on tested concrete beams and the mechanism was successfully evaluated using the AE technique.


2022 ◽  
pp. 089270572110466
Author(s):  
Himan Khaledi ◽  
Yasser Rostamiyan

Present paper has experimentally and numerically investigated the mechanical behavior of composite sandwich panel with novel M-shaped lattice core subjected to three-point bending and compressive loads. For this purpose, a composite sandwich panel with M-shaped core made of carbon fiber has been fabricated in this experiment. In order to fabricate the sandwich panels, the vacuum assisted resin transfer molding (VARTM) has been used to achieve a laminate without any fault. Afterward, polyurethane foam with density of 80 kg/m3 has been injected into the core of the sandwich panel. Then, a unique design was presented to sandwich panel cores. The study of force-displacement curves obtained from sandwich panel compression and three-point bending tests, showed that an optimum mechanical strength with a considerable lightweight. It should be noted that the experimental data was compared to numerical simulation in ABAQUS software. According to the results, polyurethane foam has improved the flexural strength of sandwich panels by 14% while this improvement for compressive strength is equal to 23%. As well as, it turned out that numerical results are in good agreement with experimental ones and make it possible to use simulation instead of time-consuming experimental procedures for design and analysis.


Author(s):  
Keramat M Fard ◽  
Mostafa Livani

Based on a new improved higher-order sandwich panel theory, the buckling analysis of a truncated conical composite sandwich panel with simply supported and fully clamped boundary conditions was performed for the first time. This panel was subjected to axial compression and external pressures. The governing equations were derived by using the principle of minimum potential energy. The first-order shear deformation theory was used for the composite face sheets, and for the core, a polynomial description of the displacement fields was assumed. Geometry was used for the consideration of different radii curvatures of the face sheets and the core was unique. The effects of types of boundary conditions, conical angles, length to smaller radius of core ratio, core to panel thickness ratio, and smaller radius of core to panel thickness ratio on the buckling response of truncated conical composite sandwich panels were also studied. The results were validated by the results published in the literature and the presented FE results were obtained by ABAQUS software.


Author(s):  
Xiongliang Yao ◽  
Wei Wang ◽  
Nana Yang ◽  
Zhanyi Guo

As a novel type of composite sandwich structure in recent years lattice structure with carbon fiber pyramidal truss core is applied to warship’s superstructure because of its high specific stiffness and specific strength, but it is difficult to design joint between superstructure and hull and there are few researches about the mechanical property of hybrid steel-to-lattice joint. Two kinds of hybrid joint specimens are designed and their compressive and flexural properties are investigated. The experimental results show that in compression test lattice sandwich is weakest and that debonding resulted from core macro-shear and face sheet wrinkling can lead to overall instability; bearing reaction can result in resin base fracture in lattice core and face sheet delamination is the main damage mode of joint structure in three-point bending test, which happens where stiffness mutation appears.


Sign in / Sign up

Export Citation Format

Share Document