OPC UA Information Modeling: A Case Study for Smart House

2012 ◽  
Vol 241-244 ◽  
pp. 2862-2866
Author(s):  
Myeong Jae Yi ◽  
Mai Son

Nowadays automation systems become more and more heterogeneous with various technologies and standards from different companies and vendors. Each technology has its own concept to model and present process data, leading to the need of a uniform view for the whole systems. OPC UA specification, the next generation of Classic OPC Standards, was introduced as a promising standard that is a good solution to address the issue. Some remarkable advantages of OPC UA have attracted attention: (i) information modeling, (ii) high-performing communication, and (iii) enhanced security mechanism. This paper aims at contributing in the first and big advantage of OPC UA, information modeling concept. Whereas Classic OPC has a poor and simple meta-data model providing tags, OPC UA uses standard information models to lift interoperability to the next level. It allows not only interoperable data exchange but also interoperable model. In our work, information modeling concept based on object-oriented techniques is exemplified by means of a case study for Smart House.

2021 ◽  
Vol 13 (7) ◽  
pp. 1367
Author(s):  
Yuanzhi Cai ◽  
Hong Huang ◽  
Kaiyang Wang ◽  
Cheng Zhang ◽  
Lei Fan ◽  
...  

Over the last decade, a 3D reconstruction technique has been developed to present the latest as-is information for various objects and build the city information models. Meanwhile, deep learning based approaches are employed to add semantic information to the models. Studies have proved that the accuracy of the model could be improved by combining multiple data channels (e.g., XYZ, Intensity, D, and RGB). Nevertheless, the redundant data channels in large-scale datasets may cause high computation cost and time during data processing. Few researchers have addressed the question of which combination of channels is optimal in terms of overall accuracy (OA) and mean intersection over union (mIoU). Therefore, a framework is proposed to explore an efficient data fusion approach for semantic segmentation by selecting an optimal combination of data channels. In the framework, a total of 13 channel combinations are investigated to pre-process data and the encoder-to-decoder structure is utilized for network permutations. A case study is carried out to investigate the efficiency of the proposed approach by adopting a city-level benchmark dataset and applying nine networks. It is found that the combination of IRGB channels provide the best OA performance, while IRGBD channels provide the best mIoU performance.


2014 ◽  
Vol 644-650 ◽  
pp. 2382-2385
Author(s):  
Feng Xie ◽  
Jiang Sheng Sun

For meeting the needs of equipment maintenance support, all kinds of maintenance support data are widely used and studied. By analyzing these data, information models are put forward. XML is used to describe the models. The information models built by XML have good maintainability and portability. The unified information models will play an important role in data exchange in equipment maintenance support areas.


2020 ◽  
Vol 12 (24) ◽  
pp. 10329
Author(s):  
Ke Xing ◽  
Ki Pyung Kim ◽  
David Ness

While the Circular Economy in the built environment is often viewed in terms of recycling, more value can be obtained from buildings and physical components by their reuse, aided by stewardship and remanufacture, to ensure optimum performance capability. The use of cyber-physical information for online identification, examination and exchange of reusable components may improve their life-cycle management and circularity. To this end, a bi-directional data exchange system is established between physical building components and their virtual Building Information Modeling (BIM) counterparts, so that their life-cycle information—including history of ownership, maintenance record, technical specifications and physical condition—can be tracked, monitored and managed. The resultant prototype Cloud-based BIM platform is then adapted to support an ongoing product-service relationship between suppliers/providers and users/clients. A case study from a major new hospital, focusing upon an example of internal framed glazed systems, is presented for ”proof of concept” and to demonstrate the application of the proposed method. The result of the case study shows that, informed by the life-cycle data from the Cloud-BIM platform, a “lease with reuse” service option is able to deliver a lower total cost and less carbon intensity for each unit of frame-glazed module. This leads to a higher level of eco-efficiency, coupled with decreased consumption of material resources and reduced generation of waste. The research is expected to serve as a step forward in the era of Industry 4.0 and illuminate a more sophisticated way to manage building assets.


Author(s):  
Lan Wang ◽  
Shinpei Hayashi ◽  
Motoshi Saeki

In the world of the Internet of Things (IoT), heterogeneous systems and devices need to be connected and exchange data with others. How data exchange can be automatically realized becomes a critical issue. An information model (IM) is frequently adopted and utilized to solve the data interoperability problem. Meanwhile, as IoT systems and devices can have different IMs with different modeling methodologies and formats such as UML, IEC 61360, etc., automated data interoperability based on various IMs is recognized as an urgent problem. In this paper, we propose an approach to automate the data interoperability, i.e. data exchange among similar entities in different IMs. First, similarity scores among entities are calculated based on their syntactic and semantic features. Then, in order to precisely get similar candidates to exchange data, a concept of class distance calculated with a Virtual Distance Graph (VDG) is proposed to narrow down obtained similar properties for data exchange. Through analyzing the results of a case study, the class distance based on VDG can effectively improve the precisions of calculated similar properties. Furthermore, data exchange rules can be generated automatically. The results reveal that the approach of this research can efficiently contribute to resolving the data interoperability problem.


2019 ◽  
Vol 18 (4) ◽  
pp. 923-940
Author(s):  
Abdul Rahman Ahsan Usmani ◽  
Abdalrahman Elshafey ◽  
Masoud Gheisari ◽  
Changsaar Chai ◽  
Eeydzah Binti Aminudin ◽  
...  

Purpose Three dimensional (3 D) laser scanner surveying is widely used in many fields, such as agriculture, mining and heritage documentation and can be of great benefit for as-built documentation in construction and facility management domains. However, there is lack of applied research and use cases integrating 3 D laser scanner surveying with building information modeling (BIM) for existing facilities in Malaysia. This study aims to develop a scan to as-built BIM workflow to use 3 D laser scanner surveying and create as-built building information models of an existing complex facility in Malaysia. Design/methodology/approach A case study approach was followed to develop a scan to as-built BIM workflow through four main steps: 3 D laser scanning, data preprocessing, data registration and building information modeling. Findings This case study proposes a comprehensive scan to as-built BIM workflow which illustrates all the required steps to create a precise 3 D as-built building information model from scans. This workflow was successfully implemented to the Eco-Home facility at the Universiti Teknologi Malaysia. Originality/value Scan to as-built BIM is a digital alternative to manual and tedious process of documentation of as-built condition of a facility and provides a detail process using laser scans to create as-built building information models of facilities.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4100
Author(s):  
Mariana Huskinson ◽  
Antonio Galiano-Garrigós ◽  
Ángel Benigno González-Avilés ◽  
M. Isabel Pérez-Millán

Improving the energy performance of existing buildings is one of the main strategies defined by the European Union to reduce global energy costs. Amongst the actions to be carried out in buildings to achieve this objective is working with passive measures adapted to each type of climate. To assist designers in the process of finding appropriate solutions for each building and location, different tools have been developed and since the implementation of building information modeling (BIM), it has been possible to perform an analysis of a building’s life cycle from an energy perspective and other types of analysis such as a comfort analysis. In the case of Spain, the first BIM environment tool has been implemented that deals with the global analysis of a building’s behavior and serves as an alternative to previous methods characterized by their lack of both flexibility and information offered to designers. This paper evaluates and compares the official Spanish energy performance evaluation tool (Cypetherm) released in 2018 using a case study involving the installation of sunlight control devices as part of a building refurbishment. It is intended to determine how databases and simplifications affect the designer’s decision-making. Additionally, the yielded energy results are complemented by a comfort analysis to explore the impact of these improvements from a users’ wellbeing viewpoint. At the end of the process the yielded results still confirm that the simulation remains far from reality and that simulation tools can indeed influence the decision-making process.


2021 ◽  
Vol 13 (4) ◽  
pp. 2039
Author(s):  
Juan F. Dols ◽  
Jaime Molina ◽  
F. Javier Camacho-Torregrosa ◽  
David Llopis-Castelló ◽  
Alfredo García

The analysis of road safety is critical in road design. Complying to guidelines is not enough to ensure the highest safety levels, so many of them encourage designers to virtually recreate and test their roads, benefitting from the evolution of driving simulators in recent years. However, an accurate recreation of the road and its environment represents a real bottleneck in the process. A very important limitation lies in the diversity of input data, from different sources and requiring specific adaptations for every single simulator. This paper aims at showing a framework for recreating faster virtual scenarios by using an Industry Foundation Classes (IFC)-based file. This methodology was compared to two other conventional methods for developing driving scenarios. The main outcome of this study has demonstrated that with a data exchange file in IFC format, virtual scenarios can be faster designed to carry out safety audits with driving simulators. As a result, the editing, programming, and processing times were substantially reduced using the proposed IFC exchange file format through a BIM (Building Information Modeling) model. This methodology facilitates cost-savings, execution, and optimization resources in road safety analysis.


Sign in / Sign up

Export Citation Format

Share Document