Experimental Investigation of the Impact of Annealing on Resistivity of Boron-Doped Hydrogenated Nanocrystalline Silicon Thin Films

2010 ◽  
Vol 29-32 ◽  
pp. 1883-1887
Author(s):  
Hai Bin Pan ◽  
Yuan Tian ◽  
Guang Gui Cheng ◽  
Li Qiang Guo

Boron-doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited by plasma enhanced chemical vapor deposition (PECVD). Microstructures of these films were characterized and analyzed by Raman spectrum and atomic force microscopy (AFM). Thickness and resistivity of these films was measured by high-resolution profilometer and four-point probe respectively. The impact of annealing on boron-doped nc-Si:H thin films’ resistivity and the relationship between resistivity and microstructure were investigated. The results show that annealing and the annealing temperature have great impact on resistivity of nc-Si:H thin films as a result of microstructures changing after annealing. Resistivity of nc-Si:H thin films decreases after annealing, but it rises with the increasing annealing temperature in the range of 250°C to 400°C.

2013 ◽  
Vol 442 ◽  
pp. 116-119
Author(s):  
Jing Wei Chen ◽  
Lei Zhao ◽  
Hong Wei Diao ◽  
Su Zhou ◽  
Ge Wang ◽  
...  

Microcrystalline silicon thin films prepared by plasma enhanced chemical vapor deposition (PECVD). Effects of deposition power on the microstructure properties of the thin films were investigated by Raman spectrometry, Fourier transform infrared absorption spectroscopy (FTIR) and atomic force microscopy (AFM). With increasing deposition power from 100 W to 900 W, the growth rate increased from 0.75Å/s to 2.96Å/s. The Raman spectrometry measurements showed that the peak of all films is nearby at 514 nm. The FTIR spectroscopic analysis exhibit that with power increasing the intensities of both the (Si-H)nstretching mode component at 2100cm-1and wagging mode component at 620cm-1increase. The surface morphology of the films using the AFM showed the surface roughness and voids of the films increase with deposition power increasing.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
S. Ktifa ◽  
M. Ghrib ◽  
F. Saadallah ◽  
H. Ezzaouia ◽  
N. Yacoubi

We have studied the optical properties of nanocrystalline silicon (nc-Si) film deposited by plasma enhancement chemical vapor deposition (PECVD) on porous aluminum structure using, respectively, the Photothermal Deflection Spectroscopy (PDS) and Photoluminescence (PL). The aim of this work is to investigate the influence of anodisation current on the optical properties of the porous aluminum silicon layers (PASL). The morphology characterization studied by atomic force microscopy (AFM) technique has shown that the grain size of (nc-Si) increases with the anodisation current. However, a band gap shift of the energy gap was observed.


1997 ◽  
Vol 46 (10) ◽  
pp. 2015
Author(s):  
CHEN GUO ◽  
GUO XIAO-XU ◽  
ZHU MEI-FANG ◽  
SUN JING-LAN ◽  
XU HUAI-ZHE ◽  
...  

2009 ◽  
Vol 1153 ◽  
Author(s):  
Yuri Vygranenko ◽  
Ehsanollah Fathi ◽  
Andrei Sazonov ◽  
Manuela Vieira ◽  
Gregory Heiler ◽  
...  

AbstractWe report on structural, electronic, and optical properties of boron-doped, hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) at a substrate temperature of 150°C. Film properties were studied as a function of trimethylboron-to-silane ratio and film thickness. The film thickness was varied in the range from 14 to 100 nm. The conductivity of 60 nm thick films reached a peak value of 0.07 S/cm at a doping ratio of 1%. As a result of amorphization of the film structure, which was indicated by Raman spectra measurements, any further increase in doping reduced conductivity. We also observed an abrupt increase in conductivity with increasing film thickness ascribed to a percolation cluster composed of silicon nanocrystallites. The absorption loss of 25% at a wavelength of 400 nm was measured for the films with optimized conductivity deposited on glass and glass/ZnO:Al substrates. A low-leakage, blue-enhanced p-i-n photodiode with an nc-Si p-layer was also fabricated and characterized.


2007 ◽  
Vol 989 ◽  
Author(s):  
Hyun Jung Lee ◽  
Andrei Sazonov ◽  
Arokia Nathan

AbstractWe report on the boron-doping dependence of the structural and electronic properties in nanocrystalline silicon (nc-Si:H) films directly deposited by plasma- enhanced chemical vapor deposition (PECVD). The crystallinity, micro-structure, and dark conductivity of the films were investigated by gradually varying the ratio of trimethylboron [B(CH3)3 or TMB] to silane (SiH4) from 0.1 to 2 %. It was found that the low level of boron doping (< 0.2 %) first compensated the nc-Si:H material which demonstrates slightly n-type properties. As the doping increased up to 0.5 %, the maximum dark conductivity (ód) of 1.11 S/cm was obtained while high crystalline fraction (Xc) of the films (over 70 %) was maintained. However, further increase in a TMB-to-SiH4 ratio reduced ód to the order of 10-7 S/cm due to a phase transition of the films from nanocrystalline to amorphous, which was indicated by Raman spectra measurements.P-channel nc-Si:H thin film transistors (TFTs) with top gate and staggered source/drain contacts were fabricated using the developed p+ nc-Si:H layer. The fabricated TFT exhibits a threshold voltage (VTp) of -26.2 V and field effective mobility of holes (μp) of 0.24 cm2/V·s.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


2015 ◽  
Vol 643 ◽  
pp. 94-99 ◽  
Author(s):  
Sucheta Juneja ◽  
S. Sudhakar ◽  
Jhuma Gope ◽  
Kalpana Lodhi ◽  
Mansi Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document