Microstructure and Mechanical Properties of 22MnB5 Steel with Different Cooling Method

2013 ◽  
Vol 331 ◽  
pp. 555-558 ◽  
Author(s):  
Hong Wei Liu ◽  
Jing Bo Yu ◽  
Hong Yun Zhao

Microstructure and mechanical properties of 22MnB5 Steel were analysis with different cooling method. The result show that the volume fraction of martensite in 22MnB5 is increased with the rising of cooling speed, the microstructure with air cooling is composed of ferrite and pealite, and the quenched microstructure is 100% martensite with metal die cooling and water cooling, tensile strength increased with the rising of cooling speed. The highest tensile strength is 1569.60MPa with elongation only 2.13% with water cooling method.

2014 ◽  
Vol 1063 ◽  
pp. 55-58
Author(s):  
Hong Wei Liu ◽  
Hong Yun Zhao ◽  
Jing Bo Yu

Microstructure and mechanical properties of 22MnB5 Steel were analysis with different heat treatment experiment. The result show that the martensite lath with water cooling become smaller than that with metal die cooling, The lath martensitic microstructure is disappeared with die cooling & tempered specimen. The tensile strength reaches the highest 1645.34MPa by water cooling, but the plastic strength product is lowest. Q&P and die cooling & tempering process can improve the elongation of 22MnB5 with a small amount of tensile strength decrease. The plastic strength product reaches the highest of 20312.74MPa•% by die cooling & tempering method.


2018 ◽  
Vol 37 (7) ◽  
pp. 693-699
Author(s):  
Xinxin Ai ◽  
Yumei Yue

AbstractIn this work, friction stir processing (FSP) was used to modify the microstructure of A356 cast aluminum alloy under air cooling and water cooling conditions. The microstructure and mechanical properties of air cooling and water cooling FSP specimens and their differences were mainly discussed. Results show that the grains can be significantly refined after FSP under both air cooling and water cooling conditions. The water cooling FSP specimen shows much smaller grains than the air cooling FSP specimen due to lower temperature. Similarly, the Si particles of water cooling FSP specimen show much smaller sizes and better distribution. Both the air cooling FSP specimen and water cooling FSP specimen own much higher tensile strength and elongation than A356 base material (BM). In particular, the tensile strength and elongation of water cooling specimen are respectively 231 Mpa and 14.15%, which are equal to 186.3% and 1088.5% of the BM. Furthermore, the microhardness of water cooling FSP specimen is lower than that of the air cooling FSP specimen.


2013 ◽  
Vol 747-748 ◽  
pp. 245-250 ◽  
Author(s):  
Jun Luo ◽  
Rong Shi Chen ◽  
En Hou Han

The microstructure and mechanical properties of as-cast Mg-3Sn-xGd (x=0, 0.2, 1 wt.%) alloys were studied by using OM, SEM, EDX, XRD etc. With the increase of Gd, the formation of Mg2Sn phase was impeded and the MgSnGd phase formed and the volume fraction of this new phase obviously increased. The ultimate tensile strength and elongation to failure increased with dilute Gd addition but sharply decreased when the Gd addition comes to 1.34 wt.%. The possible reasons for the variation in microstructure and mechanical properties were discussed.


2014 ◽  
Vol 1063 ◽  
pp. 65-68 ◽  
Author(s):  
Peng Zhang ◽  
Gang Wang ◽  
Chun Cheng Pan ◽  
Xiao Qi Ren

Microstructure and mechanical properties of different area of 22MnB5 hot stamping part were analysis by experiment. The results show that the maximum tensile strength reaches 1578MPa at bottom surface area, and the elongation is at the region of 8.5~12 with die cooling area, and the area of bottom surface has higher tensile strength than that of side wall area. Martensite is formed with die cooling, and tempered martensite and undissolved ferrites were found at side wall area. The microstructure of area with air cooling is composed of ferrite and pearlite, and a small amount of martensite.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1228
Author(s):  
Honglin Zhang ◽  
Zhigang Xu ◽  
Laszlo J. Kecskes ◽  
Sergey Yarmolenko ◽  
Jagannathan Sankar

The present work mainly investigated the effect of extrusion temperatures on the microstructure and mechanical properties of Mg-1.3Zn-0.5Ca (wt.%) alloys. The alloys were subjected to extrusion at 300 °C, 350 °C, and 400 °C with an extrusion ratio of 9.37. The results demonstrated that both the average size and volume fraction of dynamic recrystallized (DRXed) grains increased with increasing extrusion temperature (DRXed fractions of 0.43, 0.61, and 0.97 for 300 °C, 350 °C, and 400 °C, respectively). Moreover, the as-extruded alloys exhibited a typical basal fiber texture. The alloy extruded at 300 °C had a microstructure composed of fine DRXed grains of ~1.54 µm and strongly textured elongated unDRXed grains. It also had an ultimate tensile strength (UTS) of 355 MPa, tensile yield strength (TYS) of 284 MPa, and an elongation (EL) of 5.7%. In contrast, after extrusion at 400 °C, the microstructure was almost completely DRXed with a greatly weakened texture, resulting in an improved EL of 15.1% and UTS of 274 MPa, TYS of 220 MPa. At the intermediate temperature of 350 °C, the alloy had a UTS of 298 MPa, TYS of 234 MPa, and EL of 12.8%.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 854 ◽  
Author(s):  
Yongwei Liu ◽  
Fuwen Chen ◽  
Guanglong Xu ◽  
Yuwen Cui ◽  
Hui Chang

The microstructure and mechanical properties of a newly developed Fe-microalloyed Ti–6Al–4V titanium alloy were investigated after different heat treatments. The volume fraction and the morphological features of the lamellar α phase had significant effects on the alloy’s mechanical performance. A dataset showing the relationship between microstructural features and tensile strength, elongation, and fracture toughness was developed. A high aging temperature resulted in high plasticity and fracture toughness, but relatively low strength. The high strength favored the fine α and the slender β. The high aspect ratio of lamellar α led to high strength but low fracture toughness. The alloy with ~84 vol % α exhibited the highest strength and lowest fracture toughness because the area of its α/β-phase interface was the highest. Optimal comprehensive mechanical performance and heat-treatment procedures were thus obtained from the dataset. Optimal tensile strength, yield strength, elongation, and fracture toughness were 999 and 919 MPa, 10.4%, and 94.4 MPa·m1/2, respectively.


2018 ◽  
Vol 941 ◽  
pp. 292-298 ◽  
Author(s):  
Ding Ting Han ◽  
Yun Bo Xu ◽  
Ying Zou ◽  
Zhi Ping Hu ◽  
Shu Qing Chen ◽  
...  

The present investigation was made to study the effect of Al on the microstructure and mechanical properties of hot-rolled medium-Mn TRIP steel (abbreviated as Al-TRIP). As a contrast, a Si-added medium-Mn TRIP steel (abbreviated as Si-TRIP) was also studied. Addition Al in medium-Mn steel can raise Ac3 temperature, which will restrain austenite transformation and expand the two-phase region, promoting Mn and C elements enriched in austenite. In-depth microstructure and mechanical properties analysis were carried out for the hot-rolled Al-TRIP and Si-TRIP steels in this study. The microstructure was characterized by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA). Volume fraction of retained austenite was measured by D/max2400 X-ray diffractometer (XRD). A dual-phase microstructure consisting of ultra-fine grained intercritical ferrite (IF) and lath-like retained austenite (RA) with high mechanical stability was obtained after annealing at 630°C for 2h for Al-TRIP steel. As prolonging the intercritical annealing time, the stability of RA decreased primarily due to the increase of grain size. The tensile test results indicated that the Al-TRIP steel possessed a better combination of tensile strength and elongation compared to Si-TRIP steel. Excellent mechanical properties with yield strength of 790MPa, tensile strength of 1050MPa, total elongation of 35% and UTS×TEL of 39GPa·% was obtained for the Al-TRIP steel.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3214 ◽  
Author(s):  
Zeng ◽  
Liu ◽  
Gao ◽  
Jiang ◽  
Yu ◽  
...  

Effects of T5 treatment on microstructure and mechanical properties at elevated temperature of hot-ring-rolled (HRRed) AZ80-Ag magnesium alloy were systematically investigated. Results show that, after aging at 175 °C for 36 h, discontinuous and continuous precipitates form inside grains, with the former one taking up a volume fraction of ~64.9%. T5 treatment improves the tensile strength at ambient temperature of the alloy but weakens its tensile strength and creep resistance at elevated temperatures (120–175 °C), indicating opposite effects of T5 on mechanical properties at ambient and elevated temperatures. During creep at 120–175 °C and under 70–90 MPa, the dynamic precipitation process in HRRed specimen is accelerated with increasing temperature. At 150–175 °C massive nucleation and growth of dynamic discontinuous precipitates could result in an atypical primary creep stage, consisting of deceleration and acceleration creep stages, which is reported in wrought Mg-Al-based alloy for the first time. Such primary creep stage can be eliminated by T5 treatment. Besides, diffusion-controlled dislocation creep is the dominant creep mechanism for both HRRed and T5 specimens.


2011 ◽  
Vol 396-398 ◽  
pp. 468-471
Author(s):  
Chun Feng ◽  
Zhi Yong Pan ◽  
Guang Shan Li ◽  
Bing Zhe Bai

The effect of final cooling temperature on the mechanical properties of a water cooled Mn-series low carbon bainitic steel as 8Mn2SiNb has been investigated in this paper. The results indicate that the optimum final cooling temperature is 450 °C, followed by air cooling to room temperature. Compared with air cooling, the condition of water cooling to 450 °C increases the tensile strength and yield strength about 13.3% (From 805MPa to 929MPa) and 59.0%(From 464MPa to 741MPa) respectively, remaining 21.5% elongation and 151J toughness. SEM observation reveals that the microstructure of the steel after water cooling to 450 °C is mainly granular bainite +lath martensite +refined grain boundary allotriomorphic ferrite (FGBA). Compared with air cooling, the condition of water cooling to 450 °C increases the volume fraction of strengthening phase (M-A island) from 28.2% to 38.1%.


Sign in / Sign up

Export Citation Format

Share Document