Summary of Application of Intelligent Materials in Building

2013 ◽  
Vol 357-360 ◽  
pp. 1093-1096
Author(s):  
En Yu Sun ◽  
Wan Li Bi

Intelligent material is a kind of multifunctional composite bionic design, can sense environmental conditions, through the sensor network, interest will be provided to the control system, to respond to take action. Self-diagnosis and through self-growth, in situ composite regeneration mechanism of system failure, repair some local damage or destroy; to the changing external environment and conditions, timely adjust its structure and function. Because of its relative to the performance of traditional materials with special excellent, with broad prospects for development.

Author(s):  
Scott M. Woodley ◽  
Graeme M. Day ◽  
R. Catlow

We review the current techniques used in the prediction of crystal structures and their surfaces and of the structures of nanoparticles. The main classes of search algorithm and energy function are summarized, and we discuss the growing role of methods based on machine learning. We illustrate the current status of the field with examples taken from metallic, inorganic and organic systems. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function’.


2011 ◽  
Vol 301 (4) ◽  
pp. F684-F696 ◽  
Author(s):  
Ossama B. Kashlan ◽  
Thomas R. Kleyman

Our understanding of epithelial Na+ channel (ENaC) structure and function has been profoundly impacted by the resolved structure of the homologous acid-sensing ion channel 1 (ASIC1). The structure of the extracellular and pore regions provide insight into channel assembly, processing, and the ability of these channels to sense the external environment. The absence of intracellular structures precludes insight into important interactions with intracellular factors that regulate trafficking and function. The primary sequences of ASIC1 and ENaC subunits are well conserved within the regions that are within or in close proximity to the plasma membrane, but poorly conserved in peripheral domains that may functionally differentiate family members. This review examines functional data, including ion selectivity, gating, and amiloride block, in light of the resolved ASIC1 structure.


1996 ◽  
Vol 62 (12) ◽  
pp. 4641-4647 ◽  
Author(s):  
A Schramm ◽  
L H Larsen ◽  
N P Revsbech ◽  
N B Ramsing ◽  
R Amann ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Cemal Cingi ◽  
Nuray Bayar Muluk ◽  
Dimitrios I. Mitsias ◽  
Nikolaos G. Papadopoulos ◽  
Ludger Klimek ◽  
...  

This article reviews nasal structure and function in the light of intranasal pharmacotherapy. The nose provides an accessible, fast route for local treatment of nose and sinus diseases, with lower doses than are necessary systemically and few adverse effects. It can also be used for other medications as it has sufficient surface area protected from local damage by mucociliary clearance, absence of digestive enzymes, responsive blood flow, and provides a rapid route to the central nervous system.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S616-S617
Author(s):  
Alexander Mendenhall ◽  
Nikolay Burnaevskiy ◽  
Soo Yun ◽  
Bryan Sands

Abstract The “network” of homeostatic systems fails in distinct ways in individual isogenic animals during the aging process. We believe that understanding these distinct physiological states, the transitions between them, and how they relate to homeostatic system functions will allow us to better affect change in the aging process. Work in yeast showed that fixing an initial system failure, loss of vacuole acidification capacity, could increase cellular lifespan. Here we showed how the long-lived physiological state conferred by high expression of the hsp-16.2 promoter based lifespan/penetrance biomarker correlates with differences in the expression of other genes, and the structure and function of lysosomes. We found that vacuole acidification failure is not a major initial proximal cause of aging in C. elegans – at least not in their intestine cells.


Author(s):  
Edward G. Fey

In the past few years, considerable advances have been made regarding the structure and function of the nuclear matrix. In the first half of this presentation, the field of nuclear matrix research will be summarized. Emphasis will be placed on those studies where molecular interactions are demonstrated in situ utilizing high resolution light and/or electron microscopy. Studies demonstrating the role of the nuclear matrix in DNA synthesis and replication, RNA transcription and processing, and the binding of matrix attachment regions to specific nuclear matrix proteins will be summarized.


2012 ◽  
Vol 109 (38) ◽  
pp. 15366-15371 ◽  
Author(s):  
Craig R. McClain ◽  
Andrew P. Allen ◽  
Derek P. Tittensor ◽  
Michael A. Rex

With frigid temperatures and virtually no in situ productivity, the deep oceans, Earth’s largest ecosystem, are especially energy-deprived systems. Our knowledge of the effects of this energy limitation on all levels of biological organization is very incomplete. Here, we use the Metabolic Theory of Ecology to examine the relative roles of carbon flux and temperature in influencing metabolic rate, growth rate, lifespan, body size, abundance, biomass, and biodiversity for life on the deep seafloor. We show that the relative impacts of thermal and chemical energy change across organizational scales. Results suggest that individual metabolic rates, growth, and turnover proceed as quickly as temperature-influenced biochemical kinetics allow but that chemical energy limits higher-order community structure and function. Understanding deep-sea energetics is a pressing problem because of accelerating climate change and the general lack of environmental regulatory policy for the deep oceans.


2005 ◽  
Vol 105 (3-4) ◽  
pp. 464-468 ◽  
Author(s):  
Igor V. Koptyug ◽  
Anna A. Lysova ◽  
Renad Z. Sagdeev ◽  
Valery A. Kirillov ◽  
Alexander V. Kulikov ◽  
...  

2004 ◽  
Vol 49 (11-12) ◽  
pp. 61-68 ◽  
Author(s):  
T. Kindaichi ◽  
S. Okabe ◽  
H. Satoh ◽  
Y. Watanabe

Effects of hydroxylamine (NH2OH), an intermediate of NH4+ oxidation, on microbial community structure and function of two autotrophic nitrifying biofilms fed with and without NH2OH were analyzed by a 16S rRNA approach and the use of microelectrodes. In the NH2OH-added biofilm, partial oxidation of NH4+ to NO2- was observed, whereas complete oxidation of NH4+ to NO3- was achieved in the control biofilm. In situ hybridization results revealed that no nitrite-oxidizing bacteria (NOB) hybridized with any specific probes were detected in the NH2OH-added biofilm. Thus, the addition of low concentrations of NH2OH (250 mM) completely inhibited the growth of NOB. Phylogenetic analysis of 16S rDNA indicated that the ammonia-oxidizing bacteria (AOB) detected in both biofilms were closely related to Nitrosomonas europaea, and that the clone sequences from both biofilm libraries have more than 99% similarity to each other. However, in situ hybridization results revealed that the addition of NH2OH changed the form of growth pattern of the dominant Nitrosomonas spp. from dense clusters mode to single scattered cells mode. Microelectrode measurements revealed that the average NH4+ consumption rate calculated in the NH2OH-added biofilm was two times higher than that in the control biofilm. This clearly demonstrated that the oxidation of NH4+ was stimulated by NH2OH addition.


Sign in / Sign up

Export Citation Format

Share Document