Optimal Design of Wind Turbine Blades with Wilson and BEM Method Integrated

2013 ◽  
Vol 404 ◽  
pp. 286-291
Author(s):  
Jiao Jiao Ding ◽  
Hao Wang ◽  
Li Ping Sun ◽  
Bing Ma

This paper presented a new dynamic optimal design method of wind turbine blade which combined the Wilson model with the BEM aerodynamic model. Considering the wind energy utilization coefficient as the target function, the Wilson theory was used to optimize a 1.5MW blades aerodynamic shape. The revised distribution of chord and twist angle was nearly of linear change in the main output power section of blade. The optimized wind energy utilization coefficient can reach 0.552, which is very closed to the Betz limitation. In the part of the calculation of aerodynamic performance, considering both the effect of solidity and eddy current loss on the aerodynamic performance calculation, and also considering the sensitivity of the initial value in a nonlinear equation, it utilized the blade element momentum theory (BEM) which was a classical method on the aerodynamic performance of blade to calculate the aerodynamic performance.The results shows the optimized power output can be up to 1.3426MW, and compared with the rated power, the efficiency reached 89%.

Author(s):  
Yuqiao Zheng ◽  
Zhe He ◽  
Yongyong Cao ◽  
Chengcheng Zhang

When designing a wind turbine blade, the goal is to attain the highest possible power output under specified atmospheric conditions.In this paper,the maximum likelihood estimation method was used to compute the hub height wind speed at 65m mathematical model based on the observation data of He xi Corridor wind at 10m height, taking He xi region of a certain type of 40m blade as an example, based on the Blade Element Momentum Theoty and tip loss, established the blade aerodynamic mathematic model, using the genetic algorithm on the blades. Each section of the chord, twist angle of wind energy utilization coefficient, girder cap layer thickness parameters were optimized, The aerodynamic performance and stress distribution are given out, the results showed that the optimized blade wind energy utilization coefficient is greatly improved and the quality of the blade is significantly reduced. It is suitable for wind the characteristics of the blade design condition performance supper than that of general blade.It provides a theoretical basis for the blade design.


2013 ◽  
Vol 380-384 ◽  
pp. 4336-4339
Author(s):  
Hua Xin ◽  
Chun Hua Zhang ◽  
Qing Guo Zhang ◽  
Ping Wang

Wind energy is an inexhaustible, an inexhaustible source of renewable and clean energy. Present due to the energy crisis and environmental protection and other issues, the use of wind more and more world attention. The wind turbine is the best form of wind energy conversion. Wind turbine wind turbine blades to capture wind energy is the core component of the blade in a natural environment to run directly in contact with air, with seagulls wings generate lift conditions are similar, so the gull wings airfoil and excellent conformation, with wind turbine blade design designed by combining the bionic blades. Through numerical simulation analysis found bionic blade aerodynamic performance than the standard blade aerodynamic performance has improved.


Author(s):  
Xiaotong Wang ◽  
Wangqiang Niu ◽  
Wei Gu

The output power of a wind turbine is the most critical variable reflecting the operating status of the turbine. To improve the interpretability of the prediction model, a segmented output power method based on wind energy utilization coefficient is established. First, the wind energy conversion system of the wind turbine is given, and the SCADA data of a wind turbine is visually analyzed. Then it is proposed to separate the data into three groups according to different operating regions of wind turbines: the Maximum Power Point Tracking region, the rotator speed control region, and the power control region. In the Maximum Power Point Tracking region, wind energy utilization coefficient is found by a fitted cubic polynomial of the tip speed ratio. In the rotator speed control region, a modeling method for determining wind energy utilization coefficient through dynamic labels is designed. In the power control region, the output power is kept at the rated value. Finally, the 3 models are connected so that time-series data can be handled. The SCADA data of a 2.1MW wind turbine is used to verify the above models. The performance of these models is given in the form of Root Mean Square Error, indicating that the output power predicted by this method has good accuracy.The segmented output power model based on wind energy utilization coefficient can simulate the operation process of wind turbines, and has good accuracy and interpretability.


2015 ◽  
Vol 733 ◽  
pp. 493-496 ◽  
Author(s):  
Chun Mei Wu ◽  
Chun Yu Xiong ◽  
Yong Zhao

Wind turbines is one of the most important components of the wind turbine, design for wind turbines with good wind turbines is the basis of high wind energy utilization coefficient and large economic benefits. Using the theory of Wilson pneumatic designed 100 W horizontal axis wind turbine, in the process of design and design parameters on the vibration performance correction. Finally on rotor vibration modal experiment and pneumatic external characteristic experiment, the experimental results show that the design of the wind turbine at low wind speed can meet the design of the wind energy utilization coefficient, and the wind machine to avoid the resonance region speed at run time, extend the life of the rotor, so as to reduce the design cost.


Author(s):  
Hira Syed ◽  
Dr.Gulraiz Ahmed

In renewable energy the wind energy is the most significant source. The wind turbine suppresses the kinetic energy of the wind. Current research focuses on improving the aerodynamic performance of wind turbine blades through wind tunnel tests and theoretical studies. These exercises are time taking and require considerable laboratory resources. Similarly, simulation of wind turbines using CFD software (Computational Fluid Dynamics) provides cost-effective solutions for aerodynamic analysis of the blades. Due to the energy crisis in Pakistan, we need a solution to overcome the power shortage. Wind energy is an economical and affordable energy. In this study, two-dimensional airfoil S4310, was selected for the blade cross section. 2.1 m cord length from root and 0.67 m cord length from tip of the blade, aerodynamic analysis of this model was performed using ANSYS-FLUENT software. Using the turbulence model, the lift and drag coefficients were computed for wind-turbine blade at 0?-14? angles of attack (AOA). The CFD results accomplish by all together solving momentum ,continuity and the Navier-Stokes equations using a standard non-linear solver. The smart structures were also applied on the wing in which active twist was applied to the blade using twist angles from 0?-10? and similarly the lift to drag ratio were considered.


Author(s):  
J. V. Muruga Lal Jeyan ◽  
Akhila Rupesh ◽  
Jency Lal

The aerodynamic module combines the three-dimensional nonlinear lifting surface theory approach, which provides the effective propagated incident velocity and angle of attack at the blade section separately, and a two-dimensional panel method for steady axisymmetric and non-symmetric flow has to be involved to obtain the 3D pressure and velocity distribution on the wind mill model blade. Wind mill and turbines have become an economically competitive form of efficiency and renewable work generation. In the abroad analytical studies, the wind turbine blades to be the target of technological improvements by the use of highly possible systematic , aerodynamic and design, material analysis, fabrication and testing. Wind energy is a peculiar form of reduced form of density source of power. To make wind power feasible, it is important to optimize the efficiency of converting wind energy into productivity source. Among the different aspects involved, rotor aerodynamics is a key determinant for achieving this goal. There is a tradeoff between thin airfoil and structural efficiency. Both of which have a strong impact on the cost of work generated. Hence the design and analysis process for optimum design requires determining the load factor, pressure and velocity impact and optimum thickness distribution by finding the effect of blade shape by varying thickness on the basis of both the aerodynamic output and the structural weight.


2017 ◽  
Vol 79 (7-3) ◽  
Author(s):  
Iham F. Zidane ◽  
Khalid M. Saqr ◽  
Greg Swadener ◽  
Xianghong Ma ◽  
Mohamed F. Shehadeh

Gulf and South African countries have enormous potential for wind energy. However, the emergence of sand storms in this region postulates performance and reliability challenges on wind turbines. This study investigates the effects of debris flow on wind turbine blade performance. In this paper, two-dimensional incompressible Navier-Stokes equations and the transition SST turbulence model are used to analyze the aerodynamic performance of NACA 63415 airfoil under clean and sandy conditions. The numerical simulation of the airfoil under clean surface condition is performed at Reynolds number 460×103, and the numerical results have a good consistency with the experimental data. The Discrete Phase Model has been used to investigate the role sand particles play in the aerodynamic performance degradation. The pressure and lift coefficients of the airfoil have been computed under different sand particles flow rates. The performance of the airfoil under different angle of attacks has been studied. Results showed that the blade lift coefficient can deteriorate by 28% in conditions relevant to the Gulf and South African countries sand storms. As a result, the numerical simulation method has been verified to be economically available for accurate estimation of the sand particles effect on the wind turbine blades.


2018 ◽  
Vol 53 ◽  
pp. 02004
Author(s):  
Qiuyun Mo ◽  
Jiabei Yin ◽  
Lin Chen ◽  
Weihao Liu ◽  
Li Jiang ◽  
...  

In this paper, a 2D off-grid small compact model of vertical axis wind turbine was established. The sliding grid technology, the RNG turbulence model and the Coupld algorithm was applied to simulate the unsteady value of the model's aerodynamic performance. Through the analysis on the flow field at difference moments, the rules about velocity fields, vortices distributions and the wind turbine's total torque were obtained. The results show that: the speed around wind turbine blades have obvious gradient, and the velocity distribution at different times show large differences in the computional domain. In the rotating domain vorticity is large. With away from the rotation domain, vorticity reduced quickly. In the process of rotating for vertical axis wind turbine, the wind turbine's total torque showed alternating positive and negative changes.


2013 ◽  
Vol 284-287 ◽  
pp. 518-522
Author(s):  
Hua Wei Chi ◽  
Pey Shey Wu ◽  
Kami Ru Chen ◽  
Yue Hua Jhuo ◽  
Hung Yun Wu

A wind-power generation system uses wind turbine blades to convert the kinetic energy of wind to drive a generator which in turn yields electricity, the aerodynamic performance of the wind turbine blades has decisive effect on the cost benefit of the whole system. The aerodynamic analysis and the optimization of design parameters for the wind turbine blades are key techniques in the early stage of the development of a wind-power generation system. It influences the size selection of connecting mechanisms and the specification of parts in the design steps that follows. A computational procedure and method for aerodynamics optimization was established in this study for three-dimensional blades and the rotor design of a wind turbine. The procedure was applied to improving a previously studied 25kW wind turbine rotor design. Results show that the aerodynamic performance of the new three-dimensional blades has remarkable improvement after optimization.


Sign in / Sign up

Export Citation Format

Share Document