The Aerodynamic Attributes and Flight Trajectories of a Tail Fin-Stabilized Projectile

2013 ◽  
Vol 415 ◽  
pp. 544-547
Author(s):  
Chun Chi Li ◽  
Chang Sheng Tai ◽  
Cheng Chyuan Lai ◽  
Shang Min Fu ◽  
Yen Chun Tsai

Combined with low-speed wind tunnel experiments, this study adopted computational fluid dynamics (CFD) and the MATLAB/Simulink control software to analyze the aerodynamic attributes of a tail fin-stabilized projectile and subsequently simulate its flight trajectory with four degrees of freedom under a flight condition (M) of 0.6 and an angle of attack (α) between-60° and 60°. Comparing the CFD calculation results with the revised experiment data using the Karman-Tsien Rule showed that the aerodynamic coefficients CD, CL, and CM were similar within an angle of attack between-30° and 30°. The projectile further demonstrated excellent aerodynamic attributes within an angle of attack between-60° and 60°, maintaining stable flight. Furthermore, comparing the four-degrees-of-freedom simulation results with data from the firing table showed that the maximum height difference of trajectories at varying angles of elevation (mil) ranged from 3.07% to 4.68%, and the difference in the firing range distance ranged from 0.15% to 5.72%. To reduce the costs of field testing, this study establishes a method to design aerodynamic systems, analyze and compare flow fields, and simulate flight trajectories.

2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3955
Author(s):  
Yonghan Ahn ◽  
Hanbyeol Jang ◽  
Junghyon Mun

The purpose of this study is to compare the load calculation results by a model using the air changes per hour (ACH) method and a model using an airflow network (AFN) and to ascertain what causes the difference between the two models. In the basic case study, the difference in the heat transfer distribution of the model in the interior space was investigated. The most significant difference between the two models is the heat transfer that results from infiltration. Parameter analysis was performed to investigate the relationship between the difference and the environmental variables. The result shows that the greater the difference is between the air temperature inside the balcony and the outdoor air temperature, and the greater the air flows from the balcony to the residential area, and the greater the heating and cooling load difference occurs. The analysis using the actual weather files of five domestic cities in South Korea rather than a virtual case shows that the differences are not so obvious when the wind blows at a constant speed throughout the year, but are dominant when the wind does not blow during the night and is stronger alongside the occurrence of sunlight during the day.


Author(s):  
Zhang ZhunHyok ◽  
Won CholJin ◽  
Ri CholUk ◽  
Kim CholJin ◽  
Kim RyongSop

The inclusion of aerospike on blunt nose body of hypersonic vehicle has been considered to be the simplest and most efficient technique for a concurrent reduction of both aeroheating and wave drag due to hypersonic speed. However, the thermal and mechanical behavior of aerospike structure under the coupling effect of aerodynamic force and aeroheating remains unclear. In this study, the thermal and structural response of aerospike mounted on the blunt nose body of hypersonic vehicle was numerically simulated by applying 3 D fluid-thermal-structural coupling method based on loosely-coupled strategy. In the simulation, the angle-of-attack and the spike’s length and diameter are differently set as α = 0°–10°, L/D = 1–2 and d/D = 0.05–0.15, respectively. Through the parametric study, the following results were obtained. Firstly, the increase of vehicle’s angle-of-attack and spike’s length unfavorably affect the thermal and structural response of aerospike. Secondly, the increase of spike’s diameter can improve its structural response characteristic. Finally, the aerospike with the angle-of-attack of 0° and the length and diameter of L/D = 1 and d/D = 0.15, respectively, is preferred in consideration of the effect of flight angle-of-attack and spike’s geometrical structure on the thermal and structural response of spike and the drag reduction of vehicle. The numerical calculation results provide a technical support for the safe design of aerospike.


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


Actuators ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Taehoon Lee ◽  
Inwoo Kim ◽  
Yoon Su Baek

Lower limb exoskeleton robots help with walking movements through mechanical force, by identifying the wearer’s walking intention. When the exoskeleton robot is lightweight and comfortable to wear, the stability of walking increases, and energy can be used efficiently. However, because it is difficult to implement the complex anatomical movements of the human body, most are designed simply. Due to this, misalignment between the human and robot movement causes the wearer to feel uncomfortable, and the stability of walking is reduced. In this paper, we developed a two degrees of freedom (2DoF) ankle exoskeleton robot with a subtalar joint and a talocrural joint, applying a four-bar linkage to realize the anatomical movement of a simple 1DoF structure mainly used for ankles. However, bidirectional tendon-driven actuators (BTDAs) do not consider the difference in a length change of both cables due to dorsiflexion (DF) and plantar flexion (PF) during walking, causing misalignment. To solve this problem, a BTDA was developed by considering the length change of both cables. Cable-driven actuators and exoskeleton robot systems create uncertainty. Accordingly, adaptive control was performed with a proportional-integral-differential neural network (PIDNN) controller to minimize system uncertainty.


Author(s):  
Abigail Niesen ◽  
Anna L Garverick ◽  
Maury Hull

Abstract Maximum total point motion (MTPM), the point on a baseplate that migrates the most, has been used to assess the risk of tibial baseplate loosening using radiostereometric analysis (RSA). Two methods for determining MTPM for model-based RSA are to use either 5 points distributed around the perimeter of the baseplate or to use all points on the 3D model. The objectives were to quantify the mean difference in MTPM using 5 points vs. all points, compute the percent error relative to the 6-month stability limit for groups of patients, and to determine the dependency of differences in MTPM on baseplate size and shape. A dataset of 10,000 migration values was generated using the mean and standard deviation of migration in six degrees of freedom at 6 months from an RSA study. The dataset was used to simulate migration of 3D models (two baseplate shapes and two baseplate sizes) and calculate the difference in MTPM using 5 virtual points vs. all points and the percent error (i.e. difference in MTPM/stability limit) relative to the 6-month stability limit. The difference in MTPM was about 0.02 mm, or 4% percent relative to the 6-month stability limit, which is not clinically important. Furthermore, results were not affected by baseplate shape or size. Researchers can decide whether to use 5 points or all points when computing MTPM for model-based RSA. The authors recommend using 5 points to maintain consistency with marker-based RSA.


Author(s):  
Indah Etika Putri ◽  
Zulfani Sesmiarni ◽  
Alfi Rahmi

<em>The aim of this research is to find out the effectiveness of individual counseling through emotive rational counseling approach in overcoming anxiety in Payakumbuh Class IIB Penitentiary. The population is fostered citizens before the criminal period ends as many as 20 people, while the study sample is fostered citizens before the criminal period ends as many as 5 people and who are indicated to have high anxiety based on non-rondom sampling techniques and recommendations from employees. The data collection instrument is a Likert scale. Data analysis techniques using non-parametric statistical tests using Wilcoxon rack test, hypothesis testing using Statistical Product and Service Solution (SPSS) version 22. The results showed the difference between the pretest and posttest values. From the Wilcoxon test calculation results obtained a significant sip-value of 2.023. Based on the applicable provisions, it is known that the Wilcoxon Sig p-value test result is 0.043 &lt;α (α = 0.05) which means that Ha is accepted and Ho is rejected. From the results of the Wilcoxon test calculation it can be concluded that it is effective to overcome anxiety in the target population before the criminal period expires.</em>


2005 ◽  
Author(s):  
Robert Ranzenbach ◽  
Zhenlong Xu

A method is described to conduct an integrated Fluid-Structure Interaction (FSI) simulation of sails that is based upon knowledge of the sail’s design shape geometry and membrane material properties. A Finite Element Analysis (FEA) of the sail structure and a Computational Fluid Dynamics (CFD) model of the aerodynamic field are combined and iteratively solved to compute the actual flying shape of the sail under aerodynamic load, the stress strain behavior of the sail membrane, the integrated aerodynamic forces produced by the sail such as driving force and heel moment, and the resulting loads on sheets, halyards, etc. An important contribution of this particular method is the incorporation of wrinkling phenomena into the FEA portion of the calculation. Results from a study of working sails for a 30’ MORC racing yacht designed by Nelson-Marek (NM) in the 1990’s are presented and discussed with particular emphasis on the variability of primary load paths with changing trim and sailing conditions as well as the impact of sail deformation in the direction of relatively small stresses that is often poorly addressed in many proprietary sail construction methods.


Author(s):  
Vincent Delos ◽  
Santiago Arroyave-Tobón ◽  
Denis Teissandier

In mechanical design, tolerance zones and contact gaps can be represented by sets of geometric constraints. For computing the accumulation of possible manufacturing defects, these sets have to be summed and/or intersected according to the assembly architecture. The advantage of this approach is its robustness for treating even over-constrained mechanisms i.e. mechanisms in which some degrees of freedom are suppressed in a redundant way. However, the sum of constraints, which must be computed when simulating the accumulation of defects in serial joints, is a very time-consuming operation. In this work, we compare three methods for summing sets of constraints using polyhedral objects. The difference between them lie in the way the degrees of freedom (DOFs) (or invariance) of joints and features are treated. The first method proposes to virtually limit the DOFs of the toleranced features and joints to turn the polyhedra into polytopes and avoid manipulating unbounded objects. Even though this approach enables to sum, it also introduces bounding or cap facets which increase the complexity of the operand sets. This complexity increases after each operation until becoming far too significant. The second method aims to face this problem by cleaning, after each sum, the calculated polytope to keep under control the effects of the propagation of the DOFs. The third method is new and based on the identification of the sub-space in which the projection of the operands are bounded sets. Calculating the sum in this sub-space allows reducing significantly the operands complexity and consequently the computational time. After presenting the geometric properties on which the approaches rely, we demonstrate them on an industrial case. Then we compare the computation times and deduce the equality of the results of all the methods.


Sign in / Sign up

Export Citation Format

Share Document