Design of Cooling System for Infrared CCD Camera Used to Monitor Burden Surface of Blast Furnace Based on Thermoelectric Coolers

2013 ◽  
Vol 419 ◽  
pp. 778-783
Author(s):  
Li Qiang Wang ◽  
Li Zhou ◽  
Hai Tao Fan

A temperature control system based on thermoelectric coolers is designed in this paper for infrared CCD camera used to monitor burden surface of blast-furnace. The thermoelectric cooling system consists of a microcontroller module, a temperature sensor, a CCD camera, a thermoelectric cooler, a power amplifier and isolation module. The CCD camera with a temperature sensor is tightly mounted on the TEC cold surface. The microcontroller changes duty ratio of PWM signals with changes of the camera temperature to make working temperature of the CCD camera constant. The experiments show that the cooling system works well in temperature controlling

2012 ◽  
Vol 157-158 ◽  
pp. 127-131 ◽  
Author(s):  
Guan Hua Xu ◽  
Wen He ◽  
Run Jie Shen

A novel design of a temperature test chamber in multi-parameter combined environmental test was introduced, in which thermoelectric coolers were adopted to achieve both high and low temperature. Multiple distributed actuators and temperature sensors were used for improving the evenness of the temperature field. A well performed cooling system for waste heat dissipating was designed based on air-cooled radiator and circulating water flow. A temperature control system based on PC and MCU with wireless communication modules was designed. The thermoelectric cooler was driving by H-bridge circuit, whose power was controlled by PWM signal. PID algorithm was applied and average temperature was adopted to be the controlled variable. Measurement and control software on the PC and MCU was analyzed and its flow diagram was given. Influenced by centrifugal acceleration, unevenness of the temperature field would increase. A fan was mounted at the bottom of the chamber to improve the evenness of the temperature field. The experiment results show that the temperature environment with other combined environment is realized in the test chamber based on the above technology.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Eunjeong Choi ◽  
Dongyun Kim ◽  
Donggu Kang ◽  
Gi Hoon Yang ◽  
Bongsu Jung ◽  
...  

Abstract Among many biomaterials, gelatin methacrylate (GelMA), a photocurable protein, has been widely used in 3D bioprinting process owing to its excellent cellular responses, biocompatibility and biodegradability. However, GelMA still shows a low processability due to the severe temperature dependence of viscosity. To overcome this obstacle, we propose a two-stage temperature control system to effectively control the viscosity of GelMA. To optimize the process conditions, we evaluated the temperature of the cooling system (jacket and stage). Using the established system, three GelMA scaffolds were fabricated in which different concentrations (0, 3 and 10 wt%) of silanated silica particles were embedded. To evaluate the performances of the prepared scaffolds suitable for hard tissue regeneration, we analyzed the physical (viscoelasticity, surface roughness, compressive modulus and wettability) and biological (human mesenchymal stem cells growth, western blotting and osteogenic differentiation) properties. Consequently, the composite scaffold with greater silica contents (10 wt%) showed enhanced physical and biological performances including mechanical strength, cell initial attachment, cell proliferation and osteogenic differentiation compared with those of the controls. Our results indicate that the GelMA/silanated silica composite scaffold can be potentially used for hard tissue regeneration.


2010 ◽  
Vol 29-32 ◽  
pp. 349-353
Author(s):  
Jing Tang ◽  
En Xing Zheng

The paper designs a temperature control system based on AT89C51 and DS18B20. The design uses the DS18B20 digital temperature sensor as the temperature acquisition unit and the AT89C51 microcontroller unit to control them, not only have the advantages that easy to control and with good flexibility, but also can greatly enhance the controlled temperature index.


2021 ◽  
Vol 118 (3) ◽  
pp. 141-149
Author(s):  
Alina Fazylova

Today, all the processes associated with technology, mainly operate in autonomous modes, so devices such as a temperature sensor are a must. Since technical progress is taking place in industry and production by leaps and bounds, all equipment most often used in various kinds of processes and work has an automatic principle of operation [1] However, for productive work, albeit automated units, it is necessary to comply with all the exact indicators at which the device's performance will be the highest. These indicators include values, namely the required, more precisely, the working pressure, speed, and temperature. To prevent rapid wear and overload of automated equipment, the temperature level must be measured. Of course, this is not done with a simple thermometer or thermometer. For these purposes, special devices are used, such as temperature sensors. Wind power is one of the most important renewable energy solutions. As a rule, wind farms are located far from civilization, in remote regions - in hilly areas, on the sea coast [2]. These types of terrain are chosen because wind energy becomes profitable only under conditions that allow obtaining the maximum amount of wind throughout the year. However, the harsher environment calls for more sophisticated wind turbines, usually consisting of towers, blades, hubs and nacelles. To ensure control over all parts of the wind turbine, companies install controllers near the tower. A wind generator controller, like a PLC, is the brain of any wind generator, providing control over the system as a whole, the ability to generate reports and monitoring. The generator must be controlled and programmed; without a controller, it couldn't work correctly. For this reason, the controllers must be connected to a single system for remote monitoring, power generation reporting, parameter monitoring and diagnostic maintenance [3].This article provides an algorithm for calculating a temperature sensor for its correct selection for a wind generator system, which will subsequently be used for a temperature control system in a generator system.


Author(s):  
Li-Yong Han ◽  
Lin Yang ◽  
Shan Zhou ◽  
Shen Wang ◽  
Chun-Lai Tian ◽  
...  

The passive containment cooling system (PCCS) of the 3rd generation APWR utilizes natural phenomena to transfer the heat released from the reactor to the environment during postulated designed basic accidents. Steam condensation on the inner surface of the containment shell is one of the most dominate mechanism to keep the ambient conditions within the design limits. Extensive experiment and theoretical research shows condensation is a complex process, gas pressure, film temperature and velocity of the gas have impact on the heat transfer coefficient. To span the expected range of conditions and provide proper model for evaluating the condensation heat transfer process, SCOPE test facility was designed by State Nuclear Power Technology Research & Development Centre (SNPTRD) in various conditions anticipated the operating range of CAP1400 in accident conditions. Pressurized test section with a rectangular flowing channel was used, with one of the walls cooled to maintain low temperature for condensing, supplying systems was designed for different pressures, gas temperatures, velocities and coolant water temperatures. Facility components, test section structure, supplying systems and measurement technology were described in this paper, also results of some pre-tests was introduce to show property of the facility.


2020 ◽  
Vol 10 (1) ◽  
pp. 31-37
Author(s):  
Mohammad Hasan Fuadi

Diesel engines is generally used for industrial and agricultural machines. Few people care about the engine temperature so it is forced to reach temperature of 100oC, which causes overheating of the diesel engine and has an impact on the performance itself. This also uses a hopper cooling system which is certainly not effective, because it's necessary to see that the water in the reservoir is still or not, also not equipped with an engine temperature display so it's difficult to ascertain the temperature inside. This study aims to monitor and control the temperature of cooling water. Operation of temperature control uses a telecontrol system that is connected to network (Internet of Things) so diesel temperature control can be done remotely. Monitoring of temperature and water level in the reserve tank using Web Mobile. In addition, there is a temperature sensor that is used to measure the temperature of the cooling water so that users can monitor the temperature of the diesel engine on Web Mobile. The test results obtained, the temperature sensor has an average temperature reading error of 0.031004%. Diesel engines with controlled solenoid valve cooling systems can produce ideal temperatures compared to when the solenoid valve is open (using the radiator continuously) or when the solenoid valve is Closed (without using a radiator). When the solenoid is controlled the engine temperature can be ideal because the solenoid valve opening and closing system has the lowest temperature of 56.34oC and the highest temperature of only 80.85oC.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4691
Author(s):  
Jia Yu ◽  
Qingshan Zhu ◽  
Li Kong ◽  
Haoqing Wang ◽  
Hongji Zhu

This paper focuses on the problem of thermoelectric cooler waste heat recovery and utilization, and proposes taking the waste heat together with the original heat source as the input heat source of the integrated thermoelectric generation–cooling system. By establishing an analytic model of this integrated thermoelectric generation–cooling system, the steady-state and transient thermal effects of this system are analyzed. The steady-state analysis results show that the thermoelectric generator’s actual heat source is about 20% larger than the intrinsic heat source. The transient analysis results prove that the current of thermoelectric power generation and the cold end temperature of the system show a nonlinear change rate with time. The cold end temperature of the system has a maximum value. Under different intrinsic heat sources, this maximum value can be reached between 1 s and 2.5 s.


1991 ◽  
Vol 9 (1) ◽  
pp. 158-159 ◽  
Author(s):  
B. D. Carter ◽  
M. C. B. Ashley

AbstractWe describe the application of Peltier effect cooling to charge coupled device (CCD) detectors. We are developing this technique to produce a CCD camera which requires low maintenance, yet has sufficiently small dark-current for long exposure imaging. This camera will be used in an automated imaging telescope at Siding Spring Observatory. The design principles used to maximise cooling of the detector, and hence minimise dark-current, are discussed. A small dark-current can be obtained only if great care is taken to reduce or eliminate convective, conductive and radiative heating of the chip. In addition, a path of high thermal conductivity must be provided for the heat removed from the CCD. A recent laboratory test of our cooling system demonstrates that careful design can lead to sufficiently low CCD dark-current for many astronomical applications.


Sign in / Sign up

Export Citation Format

Share Document