scholarly journals Peach and Nectarine Quality Following Treatment with High-temperature Forced Air Combined with Controlled Atmosphere

HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1425-1430 ◽  
Author(s):  
David Obenland ◽  
Paul Neipp ◽  
Bruce Mackey ◽  
Lisa Neven

Yellow- and white-fleshed peach [Prunus persica (L.) Batsch] and nectarine [Prunus persica (L.) Batsch var. nectarina (Ait) Maxim.] cultivars of mid- and late-season maturity classes were subjected to combined controlled atmosphere–temperature treatment system (CATTS) using heating rates of either 12 °C/hour (slow rate) or 24 °C/hour (fast rate) with a final chamber temperature of 46 °C, while maintaining a controlled atmosphere (CA) of 1 kPa oxygen and 15 kPa carbon dioxide. Fruit seed surface temperatures generally reached 45 °C within 160 minutes and 135 minutes for the slow and fast heating rate, respectively. The total duration of the slow heating rate treatment was 3 hours, while 2.5 h was required for the fast heating rate treatment. Following treatment the fruit were stored at 1 °C for either 1, 2, or 3 weeks followed by a ripening period of 2 to 4 d at 23 °C and subsequent evaluation of fruit quality. Fruit quality was similar for both heating rate treatments. Compared with the untreated controls, CATTS fruit displayed higher amounts of surface injury, although increased injury was only an important factor to marketability in cultivars that had high amounts of surface injury before treatment. The percentage of free juice in the flesh was slightly less in CATTS fruit early in storage but was often greater in treated fruit toward the end of the storage period. Slower rates of softening during fruit ripening were apparent in CATTS fruit. Soluble solids, acidity, weight loss and color all were either not affected or changed to a very small degree as a result of CATTS. Members of a trained sensory panel preferred the taste of untreated fruit over fruit that had been CATTS but the ratings of treated and nontreated fruit were generally similar and it is unclear whether an average consumer could detect the difference. Although further work needs to be done regarding the influence of CATTS on taste, it otherwise appears that CATTS does not adversely affect the marketability of good quality fruit and therefore shows promise as a nonchemical quarantine treatment for peaches and nectarines.

Author(s):  
Erdinc Bal

The effects of combinations of modified atmosphere packaging (MAP) with potassium permanganate (KMnO4) based ethylene scrubbers on the storage life and fruit quality of nectarine (Prunus persica cv. Bayramiç Beyazı) were investigated. Three different types of ethylene sachets (contained 3, 7 and 10 g KMnO4) were used and placed beside fruits in polypropylene baskets then lined with MAP. Fruits were stored at 0-1°C and 90% relative humidity throughout 40 day. During the cooling storage period, O2 and CO2 percentage in MAP, fruit firmness, total soluble solids, titratable acidity, ascorbic acid, total flavonoid content, total phenolic content, total antioxidant content and chilling injury (CI) were determined at 10 day interval. KMnO4 treated fruits had shown delayed ripening, reduced respiration and retained of higher firmness. As the dose of KMnO4 treatment increased, it was determined more positive effect on fruit quality. 10 g KMnO4 treatment was most effective in the retention of higher biochemical compounds and inhibition of CI symptoms. The results indicate that KMnO4 treatment, as well as MAP application, should be highly recommended for retaining the fruit quality of cold-stored ‘Bayramiç Beyazı’ nectarines and fruits treated with 10 g doses of KMnO4 could be stored for 40 days with good quality.


2013 ◽  
Vol 421 ◽  
pp. 201-204
Author(s):  
Aeslina binti Abdul Kadir ◽  
Abbas Mohajerani

In general, firing process in brick manufacturing could affect the properties, colours and appearance of the brick. The main purpose of this study was to evaluate the effect of different heating rates on physical and mechanical properties during the firing of standard bricks and bricks incorporated with cigarette butt (CB). In this investigation, two different heating rates were used: slow heating rate (2oC min-1) and fast heating rate (5oC min-1). Samples were fired in solid forms from room temperature to 1050oC. All bricks were tested for their physical and mechanical properties including compressive strength, initial rate of absorption and density. Higher heating rates decrease compressive strength value but slightly increase the initial rate of absorption and density properties respectively. In conclusion, higher heating rates are able to produce adequate physical and mechanical properties especially for CB Brick.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 820
Author(s):  
José M. Lorente-Mento ◽  
Fabián Guillén ◽  
Salvador Castillo ◽  
Domingo Martínez-Romero ◽  
Juan M. Valverde ◽  
...  

The effect of melatonin pomegranate tree treatments on fruit quality and bioactive compounds with antioxidant activity at harvest and during storage at 10 °C for 60 days was assayed in two consecutive years, 2019 and 2020. In the first year, trees were treated with 0.1, 0.3 and 0.5 mM of melatonin along the developmental fruit growth cycle, and results showed that bioactive compounds (total phenolics and total and individual anthocyanins) and antioxidant activity at harvest were higher in fruits from melatonin-treated trees than in controls. Other fruit quality parameters, such as firmness, total soluble solids and aril red colour, were also increased as a consequence of melatonin treatment. In fruit from control tress, firmness and acidity levels decreased during storage, while increases occurred on total soluble solids, leading to fruit quality reductions. These changes were delayed, and even maintenance of total acidity was observed, in fruit from melatonin-treated trees with respect to controls, resulting in a fruit shelf-life increase. Moreover, concentration of phenolics and anthocyanins and antioxidant activity were maintained at higher levels in treated than in control fruits during the whole storage period. In general, all the mentioned effects were found at the highest level with the 0.1 mM melatonin dose, and then it was selected for repeating the experiment in the second year and results of the first year were confirmed. Thus, 0.1 mM melatonin treatment could be a useful tool to enhance aril content on bioactive compounds with antioxidant activity and health beneficial effects and to improve quality traits of pomegranate fruit, at harvest and during postharvest storage.


1991 ◽  
Vol 116 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Richard P. Marini ◽  
Donald Sowers ◽  
Michele Choma Marini

Girdled or nongirdled `Biscoe' peach (Prunus persica [L.] Batsch) secondary scaffold branches were covered with shade fabric to provide a range of photosynthetic photon flux densities (PPFD) from 44 to 20 days before harvest (DBH), from 20 to 0 DBH or 44 to 0 DBH. Fruit quality was affected differently by the various periods of shade during the final swell of fruit development. Shading 40 to 20 DBH did not affect fruit weight or quality, whereas shading 44 to 0 DBH had the greatest effect on fruit weight and quality. Fruit quality was generally similar on branches exposed to 100% and 45% incident PPFD (IPPFD). Fruit on” girdled branches generally responded to shade more than fruit on nongirdled branches. Fruit weight was positively related to percent IPPFD for girdfed but not nongirdled branches shaded 20 to 0 DBH and 44 to DBH. On nongirdled branches, fruit exposed to 45% IPPFD for 44 to 0 DBH had 14% less red color and 21% lower soluble solids content (SSC) than nonshaded fruit. Harvest was delayed >10 days and preharvest fruit drop was increased by shading to <23% IPPFD. Shading branches for 20 to 0 or 44 to 0 DBH altered the relationship between flesh firmness and ground color: Firmness declined as ground color changed from green to yellow for fruit shaded 44 to 20 DBH, but firmness declined with little change in ground color for fruit shaded 20 to 0 or 44 to 0 DBH. Girdling results indicated that fruit weight and SSC partially depended on photosynthate from nonshaded portions of the canopy, whereas fruit redness, days from bloom to harvest, and ground color depended on PPFD in the vicinity of the fruit.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sachin Vijaya Kumar ◽  
N. Suresh

PurposeThe Reinforced Concrete(RC) elements are known to perform well during exposure to elevated temperatures. Hence, RC elements are widely used to resist the extreme heat developing from accidental fires and other industrial processes. In both of the scenarios, the RC element is exposed to elevated temperatures. However, the primary differences between the fire and processed temperatures are the rate of temperature increase, mode of exposure and exposure durations. In order to determine the effect of two heating modalities, RC beams were exposed to processed temperatures with slow heating rates and fire with fast heating rates.Design/methodology/approachIn the present study, RC beam specimens were exposed to 200 °C, to 800 °C temperature at 200 °C intervals for 2 h' duration by adopting two heating modes; Fire and processed temperatures. An electrical furnace with low-temperature increment and a fire furnace with standard time-temperature increment is adapted to expose the RC elements to elevated temperatures.FindingsIt is observed from test results that, the reduction in load-carrying capacity, first crack load, and thermal crack widths of RC beams exposed to 200 °C, and 600 °C temperature at fire is significantly high from the RC beams exposed to the processed temperature having the same maximum temperature. As the exposure temperature increases to 800 °C, the performance of RC beams at all heating modes becomes approximately equal.Originality/valueIn this work, residual performance, and failure modes of RC beams exposed to elevated temperatures were achieved through two different heating modes are presented.


2014 ◽  
Vol 1025-1026 ◽  
pp. 445-450 ◽  
Author(s):  
Ashwary Pande ◽  
Salil Sainis ◽  
Santhosh Rajaraman ◽  
Geetha Manivasagam ◽  
M. Nageswara Rao

A comparison between slow heating to aging temperature and direct charging at aging temperature on the microstructure and mechanical properties obtained after the aging was established for the metastable beta (β) titanium alloy Ti-15V-3Cr-3Al-3Sn. The alloy was subjected to two single aging (SA) and two duplex aging (DA) conditions, with two heating rates to aging temperature: (i) low heating rate of 5 oC/min (ii) direct charging into a furnace heated to aging temperature. The microstructure analysis was carried out using Field Emission Scanning Electron Microscopy. Mechanical Testing was carried to evaluate Ultimate Tensile Strength (UTS), 0.2% Yield Strength (YS), % Elongation (%El.), % Reduction in area (%RA) and hardness. In the case of SA samples aged at 500 °C for 8 h and 500 °C for 10 h, heating rate of 5 °C/min to aging temperature resulted in a finer microstructure but did not help in achieving better strength-ductility combination compared to direct charging. Lower rate of heating allows enough dwell time in the temperature range 250-300 oC for pre-precipitation reaction to occur which aids in fine scale precipitation of alpha phase during aging. In the case of DA samples aged at 250 oC for 24 h followed by 500 oC for 8 h and 300 oC for 10 h followed by 500 oC for 10 h, no tangible difference between lower rate of heating and direct charging was observed in mechanical properties or microstructure. This is believed to be due to the pre-aging steps 250 oC/24 h or 300 oC/10h in the two DA treatments, which create finely distributed precursors thereby leaving no scope for the heating rate to play a role.


Author(s):  
Suchismita Jena ◽  
Ramesh K. Goyal ◽  
Anil K. Godhara ◽  
Abhilash Mishra

Aims:  To evaluate the potentiality of bio-extract coatings for achieving extended shelf life with enhance fruit quality attributes in pomegranate under ambient storage condition.  Study Design:  The lab experiment conducted in complete randomized design with three repetitions on Mridula cultivar of pomegranate.     Place and Duration of Study:  The experiment was conducted during September 2016 at department of fruit science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India. Methodology: Pomegranate freshly harvested fruits were coated with three bio-extracts coatings viz. Aloe vera (50,75 and 100%), ginger (1,2 and 3%) and mints (10,20 and 30%). The coated fruits were stored at ambient room condition in corrugated fiber board boxes for twelve days.  Periodically effects of bio-extract coatings, storage period and their interaction were observed for physiological loss in weight, decay loss, juice content, TSS: acid ratio, ascorbic acid content and anthocyanin content.    Results: Surface coating with Aloe vera extract 100% was found most effective in reducing physiological loss in weight (50% less reduction as compared to untreated control) whereas ginger extract 3% in reducing the decay loss of fruits (9.65%) as compared to untreated control (23.36%). Among various treatments, the coating of pomegranate fruits with Aloe vera extract 100% resulted in lowest total soluble solids to acid ratio (32.17%) and significantly highest content of juice (47.17%), anthocyanin (13.98 mg/100 g) and ascorbic acid (12.82 mg/100 g) of the fruits along with highest organoleptic rating. The quality attributes viz. total soluble solids to acid ratio, anthocyanin of fruits increased with progression of storage period, while juice content and ascorbic acid decreased. Conclusion: Bio-extract coating of Aloe vera (100%) substantially improved the shelf life with retaining better fruit quality attributes under ambient conditions and has the potential to substitute the prevalent chemical coatings for pomegranate.  


2008 ◽  
Vol 88 (4) ◽  
pp. 753-758 ◽  
Author(s):  
Jennifer R DeEll ◽  
Dennis P Murr ◽  
Behrouz Ehsani-Moghaddam

The effects of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, on the ripening and quality of Fantasia nectarines were examined. Fruit were harvested from two commercial orchards and subsequently exposed to 1 μL L-1 of 1-MCP for 24 h at 0°C. Following treatment, fruit were held at 0°C for 0, 2, or 4 wk, and then assessed for quality during a ripening period at 23°C. 1-MCP treatment improved postharvest firmness retention in nectarines after 0 and 2 wk at 0°C plus 4 days at 23°C. Soluble solids concentration (SSC) was lower in nectarines treated with 1 MCP and held for 0 or 4 wk at 0°C, compared with similar non-treated fruit. The peel ground color change from green to yellow was also delayed by 1-MCP. Nectarines treated with 1-MCP exhibited less CO2 and hydrophobic volatile production during 14 days at 23°C, compared with non-treated fruit. The overall inhibition of fruit ripening by 1-MCP appears transitory in Fantasia nectarines. Chilling injury was observed after 4 wk of storage at 0°C and 1-MCP-treated fruit had less visual chilling-related injury but greater chilling-induced flesh hardening. Further research is needed to determine the effects of 1-MCP on different chilling injury symptoms in nectarines. Key words: 1-MCP, fruit quality, ripening, storage, shelf-life, Prunus persica


Author(s):  
Malaka A. Saleh ◽  
Nagwa S. Zaied ◽  
M. A. Maksoud ◽  
Omaima M. Hafez

The present study was conducted during 2015 and 2016 seasons on Le Conte pear fruits harvested at mature stage, to investigate the application of (10% w/v) Arabic Gum (AG), Jojoba oil (JO) and Moringa oil (MO) at the rate (100 %) alone on physical and chemical properties. Fruits stored at 0 ± 1°C and 85-90 % relative humidity (RH) for 105 days. A fruit sample of each treatment was taken out at the end of cold storage period and left at room temperature (23 ± 2°C) and 47% (RH) up to 7 days was examined for quality Assessments. Fruit physical properties (weight loss, decay percentages and fruit firmness "Lb/inch2") and fruit chemical properties (total soluble solids percentage and total acidity percentage were evaluated. The results obtained that, all treatments including control succeeded in preventing fruit decay percentage up to 30 days in the two seasons. It is worth mentioning that, Le Conte pear fruits were coated with MO with stands free from deterioration up to 75 days of cold storage period. Beside, fruits coated MO progress in reducing the percentages of weight loss and decay throw cold storage periods for 105 day. The rate of softening increased in fruits with increasing the storage time in both fruits coated and uncoated, but it was significantly declined in uncoated treatments. Moreover, JO coating was more effective in firmness retention compared to the other treatments. Followed by pear fruits was coating with MO and AG in this respect. Furthermore, all coated fruits enhancement fruit quality during storage periods. Finally, it can be concluded that coating Le Conte fruits by Moringa oil recorded successfully reduction in fruit weight loss, decay percentages, improving fruit quality and extended storage fruit life as well as stimulate marketing period (shelf life), also safe on environmental and human health.


2021 ◽  
Vol 13 (2) ◽  
pp. 32-42
Author(s):  
Van Nguyen

Ohmic heating (OH) is a method that heat is generated within the food due to its electrical resistance, resulting in a relatively linear heating rate and uniform temperature distribution. Because surimi-based paste contains water and salts, the conductivity is sufficiently good for the ohmic effect. Gelation induced by OH greatly depends on heating conditions such as heating speed, heating time, or electrical conductivity. However, the detailed information obtained is quite limited. Therefore, in order to clarify how ohmic heating affects the physical properties of surimi gel under OH, gels from croaker surimi (SA grade) were obtained using different heating conditions (heating speed, heating time, or salt concentration - electrical conductivity). Furthermore, the gels heated by ohmic heating were compared with the gel obtained by conventional water-bath heating. The results showed that, at the same heating rates, higher salt concentration generated better surimi gels for croaker surimi. Gels cooked ohmically at a slow heating rate performed significantly better than those cooked at a fast heating rate or heated conventionally in a water bath. There was little discernible difference in protein pattern between gels heated by OH and conventional water bath heating at fast heating rates with two different salt concentrations. The results also indicated that holding time at target temperature showed no effect on the gel. These results suggested that the properties of heat-induced surimi gels by OH are affected by not only heating speed but also holding time at maximum temperature and salt content.


Sign in / Sign up

Export Citation Format

Share Document