Nonlinear Behavior in Current Mode Research of Z-Source DC/DC Converter

2010 ◽  
Vol 44-47 ◽  
pp. 1677-1681
Author(s):  
Ke Guo ◽  
Yan Chen ◽  
Lin Zhou ◽  
Lu Dai

Z-source converter as a kind of power converter will be responsible for the energy transmission, the paper focuses on the nonlinear characteristic analysis of Z-source DC/DC converter, in the continuous conduction mode (CCM), take Z-source converter with peak current control as the research object, establish stroboscopic mapping model for analyzing its nonlinear characteristic. the experiment result proves that Z-source converter stroboscopic mapping model is correct for analyzing its nonlinear behavior, which provides a theoretical basis for optimal design and control.

2013 ◽  
Vol 23 (07) ◽  
pp. 1350113 ◽  
Author(s):  
YIBO ZHAO ◽  
JIUCHAO FENG ◽  
YANFENG CHEN

This paper investigates nonlinear bifurcation behaviors in the input-series output-parallel (ISOP) connected DC–DC converters under peak current control operating in continuous conduction mode. Circuit simulation demonstrates typical nonlinear phenomena occurring in the ISOP connected DC–DC converters. A precise discrete-time mapping model is presented to analyze the stability and bifurcation phenomena in the ISOP connected DC–DC converters. Interaction of the outside voltage loop and inner loop leads to coexisting slow-scale and fast-scale bifurcation which is investigated under two different values of the bandwidth.


Author(s):  
Djamal Gozim ◽  
Kamel Guesmi ◽  
Djilali Mahi

<p>This paper presents the practical analysis of Boost converter operating in continuous conduction mode under current control. We start by theconverter modeling, then experimental results will be exposed where we propose an experimental circuit, to study the influence of the variation of different circuit parameters such as reference current, input voltage and load. We also analyze the control technique performances. The experimental results are given and interpreted in each case.</p>


Author(s):  
Razman Ayop ◽  
Shahrin Md Ayob ◽  
Chee Wei Tan ◽  
Tole Sutikno ◽  
Mohd Junaidi Abdul Aziz

<span lang="EN-US">Direct current (DC) electronic load is a useful equipment for testing the electrical system. It can emulate various load at a high rating. The electronic load requires a power converter to operate and a linear regulator is a common option. Nonetheless, it is hard to control due to the temperature variation. This paper proposed a DC electronic load using the boost converter. The proposed electronic load operates in the continuous current mode and control using the integral controller. The electronic load using the boost converter is compared with the electronic load using the linear regulator. The results show that the boost converter able to operate as an electronic load with an error lower than 0.5% and response time lower than 13 ms.</span>


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 4-11
Author(s):  
MOHAMED CHBEL ◽  
LUC LAPERRIÈRE

Pulp and paper processes frequently present nonlinear behavior, which means that process dynam-ics change with the operating points. These nonlinearities can challenge process control. PID controllers are the most popular controllers because they are simple and robust. However, a fixed set of PID tuning parameters is gen-erally not sufficient to optimize control of the process. Problems related to nonlinearities such as sluggish or oscilla-tory response can arise in different operating regions. Gain scheduling is a potential solution. In processes with mul-tiple control objectives, the control strategy must further evaluate loop interactions to decide on the pairing of manipulated and controlled variables that minimize the effect of such interactions and hence, optimize controller’s performance and stability. Using the CADSIM Plus™ commercial simulation software, we developed a Jacobian sim-ulation module that enables automatic bumps on the manipulated variables to calculate process gains at different operating points. These gains can be used in controller tuning. The module also enables the control system designer to evaluate loop interactions in a multivariable control system by calculating the Relative Gain Array (RGA) matrix, of which the Jacobian is an essential part.


2019 ◽  
Vol 9 (2) ◽  
pp. 252 ◽  
Author(s):  
Ziqian Zhang ◽  
Cihan Gercek ◽  
Herwig Renner ◽  
Angèle Reinders ◽  
Lothar Fickert

This article presents an in-situ comparative analysis and power quality tests of a newly developed photovoltaic charging system for e-bikes. The various control methods of the inverter are modeled and a single-phase grid-connected inverter is tested under different conditions. Models are constituted for two current control methods; the proportional resonance and the synchronous rotating frames. In order to determine the influence of the control parameters, the system is analyzed analytically in the time domain as well as in the frequency domain by simulation. The tests indicated the resonance instability of the photovoltaic inverter. The passivity impedance-based stability criterion is applied in order to analyze the phenomenon of resonance instability. In conclusion, the phase-locked loop (PLL) bandwidth and control parameters of the current loop have a major effect on the output admittance of the inverter, which should be adjusted to make the system stable.


2014 ◽  
Vol 875-877 ◽  
pp. 2097-2106
Author(s):  
Rai Wung Park

The transit motion and the rotating motion have highly different effects in a technical systems and have almost nonlinear system behaviors. For the descriptions of their dynamical causes and effects on system, the physical information, which is concerned as a nonlinear mathematic model, has been used. But the corresponding equations are generally not easy to solve in complete form or their solutions are so complicated to see through the coherence. A common way to settle such a problem is to linearize system exactly in a state space or on a operating points with Taylor's series approximately. An advanced method to an approximation is a bilinear system that offers global separations principle. In this paper, an extended application of this theory is given in a modeling and control on the electro hydrostatic cylinder driver with both the transit and rotating motions for the keel system that mostly have not only advantage of high performance, small volume of building and weight but also high nonlinear behavior.


2013 ◽  
Vol 23 (04) ◽  
pp. 1350062 ◽  
Author(s):  
GUOHUA ZHOU ◽  
BOCHENG BAO ◽  
JIANPING XU

The complex dynamics and coexisting fast-slow scale instability in current-mode controlled buck converter with constant current load (CCL), operating in both continuous conduction mode (CCM) and discontinuous conduction mode (DCM), are investigated in this paper. Via cycle-by-cycle computer simulation and experimental measurement of current-mode controlled buck converter with CCL, it is found that a unique fast-slow scale instability exists in the second-order switching converter. It is also found that a unique period-doubling accompanied by Neimark–Sacker bifurcation exists in this simple second-order converter, which is different from period-doubling or Neimark–Sacker bifurcations reported previously. Based on a nonlinear discrete-time model and the corresponding Jacobian, the effects of CCL and input voltage on the dynamics of current-mode controlled buck converter are investigated and verified theoretically. Fixed point analysis for slow-scale low-frequency oscillation is also given to verify the dynamics and the coexisting fast-slow scale instability.


2015 ◽  
Vol 781 ◽  
pp. 406-409
Author(s):  
Dome Sulong ◽  
Chuttchaval Jeraputra

This paper presents the design and control of a grid-connected flyback inverter with a DC active filter for photovoltaic (PV) cells. The proposed topology consists of a flyback DC-AC inverter and a DC active filter that can operate independently. The flyback inverter, controlled in digital peak current mode, regulates the full-wave rectified sinusoidal current later, which is alternately inverted and injected into the grid. The DC active filter regulates the smooth current/power drawn from a PV module by using cascaded proportional-integral (PI) controllers. Analysis, design and control of the proposed topology are presented. A 100W/220V/50Hz prototype is developed and tested. The experimental results show that the proposed flyback inverter with a DC active filter is capable of regulating a sinusoidal current fed into the grid, actively filtering the DC current/power and achieving reasonably high energy conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document