Thermal Expansion Coefficient of Ni Base Alloy Composite Coating Containing Spheroidal Ceramic Grains

2010 ◽  
Vol 44-47 ◽  
pp. 2148-2151
Author(s):  
Xie Quan Liu ◽  
Xin Hua Ni ◽  
Shu Qin Zhang ◽  
Wan Heng He

Ni base alloy composite coating containing spheroidal ceramic grains can be fabricated by a vacuum fusion sintering method. Composite coating was mainly composed of Ni base alloy and spheroidal ceramic grains with random orientation. The three-phase model is used to determine the thermal expansion coefficient of the composite coating. First, Eshebly-Mori-Tanaka method was used to determine thermal disturbance strain in two-phase cell aroused thermal inconsistency. Then, average thermal strain in the two-phase cell aroused by thermal inconsistency is gained by the means of volume equilibration. The two-phase cell is transverse isotropy and has two independent thermal expansion coefficients. Finely, based on mean strain of Ni base alloy ceramic composite coating containing spheroidal ceramic grains, the effective thermal expansion coefficient of the composite coating is obtained by considering random orientation of two-phase cells. Ni base alloy composite coating containing spheroidal ceramic grains is isotropy and has one independent thermal expansion coefficient.

Author(s):  
Yan Xie ◽  
Dengfeng Lu ◽  
Jingjun Yu

This paper mainly concentrates on the design and analysis of the annulus with zero thermal expansion coefficient (ZTE) aiming to solve the heat generation and deformation in high speed bearing. First, a fork-like lattice cell inspired by the basic triangular cell is put forward and further applied to construct an annulus. The stretch-dominated lattice cell utilizes the Poisson’s contraction effect to achieve the tailorable thermal expansion coefficient (CTE). The thermal behaviors differences between the continuous interfaces and lattice cells will lead to the internal stress. Thus, the CTE of the annulus consisting of the lattice cell can be tailored to zero even negative values through the offset between the thermal-strain and force-strain. Then a theoretical model is established with some appropriate assumptions to reveal the quantitative relations among the geometrical parameters, material properties and equivalent CTEs thoroughly. The prerequisites for realizing a zero CTE are further derived in terms of material limitations and geometric constraints. Finally, FEA method is implemented to verify and analyze the thermal behaviors of annulus. The proposed annulus design characterized by the CTE tunability, structure efficiency and continuous interfaces is hopefully to be applied in the high speed bearings, adapters between the shaft and collar and fastener screws.


2003 ◽  
Vol 9 (1) ◽  
pp. 45-51
Author(s):  
Darius Zabulionis ◽  
Gediminas Marčiukaitis

Thermal strain is one of the factors causing additional stresses in a composite structure. It is necessary to calculate the coefficient of thermal expansion in evaluating thermal strains. According to the research, concrete is a material consisting of three phases: aggregate, interfacial transition zone (ITZ) and cement paste. The article presents the technique which enables the estimation of the thermal expansion coefficient of the mortar consisting of various aggregate fractions and covered with ITZ layer. A parametric study of various ITZ layer characteristics influencing the coefficient of thermal expansion has been carried out in the present paper. It has been determined that dry mortar or concrete could be treated as a material consisting of two components. While evaluating moist mortar or concrete it is necessary to take into account the depth of the ITZ the bulk modulus and the coefficient of thermal expansion.


2012 ◽  
Vol 193-194 ◽  
pp. 486-491
Author(s):  
Li Xie ◽  
Wu Yang Ding

In order to separate early-gae autogenous shrinkage from thermal deformation, it is the key to measure accurately thermal expansion coefficient of concrete at early ages. By analysing deeply the research status of early-age thermal expansion coefficient of concrete, the influences of temperature history on early-age autogenous shrinkage and the selection of thermal expansion coefficient are discussed. Moreover, based on the existing methods of separating early-gae autogenous shrinkage from thermal deformation, the more reasonable two-phase separating method considering concrete ages is provided.


2014 ◽  
Vol 584-586 ◽  
pp. 1071-1075
Author(s):  
Jun Wu

Asphalt mixture was considered as a two-phase composite, in which coarse aggregates are embedded into asphalt mastic matrix, namely a mix of fine aggregates and asphalt, so that a theoretical framework was proposed to correlate its effective thermal expansion coefficient with its components and microstructures based on the Eshelby equivalent inclusion theory. A four-parameter model with the experimentally determined parameters was used to characterize the viscoelastic constitutive behavior of asphalt mastic. The thermal expansion coefficient prediction of asphalt mixture was conducted and compared with the predictions by the sparse method and the self-consistent method. It was revealed that the prediction from the proposed theoretical framework is reasonable.


2013 ◽  
Vol 1507 ◽  
Author(s):  
Yoshitaka Ehara ◽  
Satoru Utsugi ◽  
Takahiro Oikawa ◽  
Tomoaki Yamada ◽  
Hiroshi Funakubo

ABSTRACTEpitaxial rhombohedral Pb(Zr0.65Ti0.35)O3films with (100) and (110)/(10-1) and (111)/(11-1) orientations were grown on various kinds of singlecrystal substrates having different thermal expansion coefficient. Volume fractions of (110) and (111) orientations in respective (110)/(10-1) and (111)/(11-1)-oriented films were almost linearly increased with increasing thermal strain, εthermal, applied to the films that wasgenerated under the cooling process after the deposition from the growth temperature to the Curie temperature.Observed saturationpolarization (Psat)was changed linearly with the volume fractions of (110) and (111) orientations, in the same manner asthe volume fractions of (001) and (101) orientations in (001)/(100) and (101)/(110) oriented tetragonal Pb(Zr,Ti)O3 filmsreported previously. These results showed that the volume fraction of the non-180o domains Pb(Zr,Ti)O3films of both tetragonal and rhombohedral symmetriescan be manipulated by εthermal, which brings possibly to control the Psat value.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


Sign in / Sign up

Export Citation Format

Share Document