The Study of New Type of Double Metal Nanofluids Suspension Stability

2013 ◽  
Vol 440 ◽  
pp. 54-60
Author(s):  
Qi Qi Hou ◽  
Xiao Ming Pan ◽  
Wei Zheng

This paper made two types metal nanoparticles whose laws of motion had bigger different into ethylene glycol became a new type of double metals nanofluids coolant, and through theoretical analysis and experimental observations to research the different of aggregation properties with single metal nanofluids coolant. Research results of theoretical analysis showed that particles motion laws were the important element of nanoparticle aggregation, because of differences in movement, as the same conditions, double metals nanoparticles had the advantage of aggregation number and equivalent diameter of poly group better than single metal nanoparticles. Experimental results showed that through light beam transmittance test, we knew that the transmitting light degree of homogeneity of double metal nanofluids coolant was better than single metal nanofluids coolants; through contrast TME photos, we got nanoparticle aggregation state of three types of metal nanoparticles, and knew the otherness of nanoparticle aggregation state between double metal nanoparticles and Cu nanoparticles and Ag nanoparticles. This paper provides a scientific attempt to solve nanoparticles aggregation.

1986 ◽  
Vol 76 ◽  
Author(s):  
John B. Warren

ABSTRACTCollaborative work between Brookhaven and Los Alamos National Laboratories is developing a new type of linear accelerator that uses a high-power, picosecond pulse CO2 laser to irradiate a specialized form of grating with a pitch of 10.6 microns. The electromagnetic field that results can be used to accelerate electrons at field gradients of several GeV/m with potential efficiencies much better than current accelerators. The grating must be conductive to minimize resistive losses, be able to withstand high fields without damage, and requires dimensional tolerances in the sub-micron range. These requirements focus attention on grating material selection, microfabrication methods, and metrological methods used for quality control. At present, several types of gratings have been manufactured by reactive ion etching of fused silica in CHF 3/Ar or etching silicon with KOH/H 2O or ethylenediamine-pyrocatechol solutions. Metrological analysis of the gratings has begun with a Tracor Northern 5700 digital image analyzer.


2015 ◽  
Vol 6 (3) ◽  
pp. 55-60
Author(s):  
Pritibhushan Sinha

Abstract We consider the median solution of the Newsvendor Problem. Some properties of such a solution are shown through a theoretical analysis and a numerical experiment. Sometimes, though not often, median solution may be better than solutions maximizing expected profit, or maximizing minimum possible, over distribution with the same average and standard deviation, expected profit, according to some criteria. We discuss the practical suitability of the objective function set and the solution derived, for the Newsvendor Problem, and other such random optimization problems.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 129
Author(s):  
Kotaro Tanahashi ◽  
Tsuyoshi Koga

Slide-ring (SR) gels, a new type of gels that have cross-links moving along the chains, are known to have unique mechanical characteristics. In the case of biaxial deformations, it has been experimentally shown that the stress–strain (S–S) relationships of SR gels can be well described by the neo-Hookean (NH) model. This behavior is quite different from that of conventional chemical gels, where the S–S curves deviate from the NH model. To understand the molecular mechanism of such peculiar elastic properties of SR gels, we studied the effects of movable cross-links by using molecular simulations and theoretical analysis. We calculate the S–S relationships in biaxial deformation for two types of models: slip model, where the cross-links can slide along chains representing SR gels, and non-slip model, which corresponds to conventional chemical gels. In the theoretical analysis, we calculate the S–S relationships by using the models with the Gaussian and the Langevin chains to investigate the nonlinear stretching effect of the chain in the slip and non-slip models. As a result, we found that the peculiar elastic behaviors of SR gels in biaxial deformations are well explained by the effect of movable cross-links suppressing the nonlinear stretching of the chain.


Author(s):  
Yi Xie

Heterogeneous network is supposed to be the dominant network architecture of the fifth generation (5G) cellular network, which means small cells are overlaid on the macrocell. The beamforming (BF) and cell expansion are two important approaches to serve users in small cells. Furthermore, non-orthogonal multiple access (NOMA) is a new type of multiple access multiplexing which improves system performance without taking up extra spectrum resources. Therefore, it becomes one promising technique in 5G. In this paper, NOMA is applied in a 5G heterogeneous network with biased small cells. The BF strategy and the multiuser scheduling method are proposed. The main user in NOMA is scheduled inside the original coverage of the small cell while the side user is chosen from the biased expansion area. The BF strategy that is executed depends on the channel of main user. The multiuser scheduling method is to maximize the rate performance. The proposed method can provide performance benefits. Simulation results show that the proposed methods can be well applied in heterogeneous networks. The achieved performance gain is approximately twice better than traditional OMA and has 10% improvement to the stochastic schedule method. In addition, the average rate of cell edge users is improved.


2020 ◽  
Vol 34 (4) ◽  
pp. 387-394
Author(s):  
Soodabeh Amanzadeh ◽  
Yahya Forghani ◽  
Javad Mahdavi Chabok

Kernel extended dictionary learning model (KED) is a new type of Sparse Representation for Classification (SRC), which represents the input face image as a linear combination of dictionary set and extended dictionary set to determine the input face image class label. Extended dictionary is created based on the differences between the occluded images and non-occluded training images. There are four defaults to make about KED: (1) Similar weights are assigned to the principle components of occlusion variations in KED model, while the principle components of the occlusion variations have different weights, which are proportional to the principle components Eigen-values. (2) Reconstruction of an occluded image is not possible by combining only non-occluded images and the principle components (or the directions) of occlusion variations, but it requires the mean of occlusion variations. (3) The importance and capability of main dictionary and extended dictionary in reconstructing the input face image is not the same, necessarily. (4) KED Runtime is high. To address these problems or challenges, a novel mathematical model is proposed in this paper. In the proposed model, different weights are assigned to the principle components of occlusion variations; different weights are assigned to the main dictionary and extended dictionary; an occluded image is reconstructed by non-occluded images and the principle components of occlusion variations, and also the mean of occlusion variations; and collaborative representation is used instead of sparse representation to enhance the runtime. Experimental results on CAS-PEAL subsets showed that the runtime and accuracy of the proposed model is about 1% better than that of KED.


2012 ◽  
Vol 512-515 ◽  
pp. 377-381 ◽  
Author(s):  
Jin Rong Lu ◽  
Yang Zhou ◽  
Yong Zheng ◽  
Shi Bo Li ◽  
Zhen Ying Huang ◽  
...  

In this paper, a new type of Ti3SiC2/Cu composites with the volume fractions of 30% Ti3SiC2 particle was prepared by hot pressing and vacuum sintering respectively. The effects of sintering temperature and holding time on the density, resistance and Vickers hardness of Cu-30vol%Ti3SiC2 composite were investigated. The results show that the mechanical properties of the composites prepared by hot pressing are better than that prepared by vacuum sintering. The relative densities of Cu-30vol% Ti3SiC2 composites are rather high in suitable sintering conditions. It achieved 100% for the composites prepared by hot pressing at 930°C for 2h, and 98.4% for the composites prepared by vacuum sintering at 1250°C for 1h. At the same time, the maximum Vickers hardness reached 1735MPa at 900°C by hot pressing. The resistance and Vickers hardness of the composites decreased with an increase in sintering temperature, whereas the density increased. Scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) were used to observe the microstructure of the composites. The relationship between microstructure and mechanical properties was discussed.


2013 ◽  
Vol 409-410 ◽  
pp. 668-672
Author(s):  
Yong Mei Xu ◽  
Jian Tang ◽  
Jun Han ◽  
Chu Qin Lin

Aimed at a new type of ventilation - stratum ventilation, air distributions at a breathing-zone in a model office were measured under kinds of air changes, the measure parameters in the experimental studies included temperatures, wind speeds and pollutant concentrations, based on which the thermal comfort at a breathing-zone were studied. Experimental results show that, the temperature, pollutant concentration and wind speeds in a breathing-zone under 5 times air changes are better than those under 6 times air changes. The calculating results of PMV and PPD indicate that the thermal comfort at a breathing-zone under 5 times air changes is better. The experimental study is instructive for the development of the ventilation.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Jin Li ◽  
Xiaoli Fu ◽  
Shenglin Yan

Abstract Based on the study of leakage characteristics of labyrinth seal structure (LSS), a new type of combined seal structure (CSS) consisting of the labyrinth structure and the nozzle structure has been proposed. The sealing characteristics of CSS and LSS are compared by means of numerical simulation and experiments, and the effects of the internal resistance of the device, structural geometric parameters and other factors on the leakage characteristics of CSS are studied. The results illustrate the following conclusions: (a) When the inlet flow is 12 m3/h and the internal resistance of the device is 2000–4000 Pa, the leakage rate of CSS decreases by 30%–40% in comparison with that of LSS, which indicates that the performance of CSS is much better than that of LSS. (b) The leakage rate increases as the internal resistance of the device increases. When the internal resistance of the device increases from 2000 Pa to 8000 Pa, the leakage rate increases from 26% to 72%. (c) When the internal resistance of the device is constant, the larger the inlet flow, the smaller the leakage rate. (d) The choice of nozzle radius in structural geometric parameters is more important for the leakage rate than the tooth height and teeth numbers. When the nozzle radius decreases, ΔPAB (pressure difference between the labyrinth structure and the nozzle structure) and the leakage rate decrease accordingly.


Sign in / Sign up

Export Citation Format

Share Document