Study on Layer Fabrication for 3D Structure of Photoreactive Polymer Using DLP Projector

2013 ◽  
Vol 465-466 ◽  
pp. 911-915
Author(s):  
Kamarudin Khairu ◽  
Mustaffa Ibrahim ◽  
S. Hassan ◽  
H. Hehsan ◽  
Ashari Kasmin ◽  
...  

This paper presents a research on 3D part fabrication from composition of photo initiator (Phenylbis (2,4,6-trimethylbenzoyl)), photo absorber (Sudan I) and 1, 6-Hexanediol polymer effect based on curing parameters. A DLP projector was used as energy light source which initiated the photo reactive polymer at three different light source distances with three different exposed time to evaluate photoreactive polymer solidification phenomena. The experiment results obtained shows that Sudan I composition, light intensity value and exposure time of the varied photo absorber give significant effect to layer thicknes, surface roughness and hardness value. These works also prove that photo absorber composition solution gave a different mechanical properties effect for 3D microstructure fabrication.

2012 ◽  
Vol 626 ◽  
pp. 420-424 ◽  
Author(s):  
K. Khairu ◽  
Ibrahim Raman ◽  
Mohammad Asraf Shaik Mohamed ◽  
Mustaffa Ibrahim ◽  
Wahab Saidin

This paper presents a research on composition photo absorber (Sudan I) effect based on curing parameter, the Liquid Crystal Display (LCD) projector as energy light source initiated the photo reactive polymer. The polymer based material with composition of 1, 6-Hexanediol dicrylate, Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide with varied Sudan I concentration was used to build 3D structures. The structure was fabricated with three different photo absorber concentrations 0.002%, 0.003%. and 0.006%. of Sudan I. In this experiment the photoreactive polymer solidification phenomena was evaluated.The experiment result obtained, that exposed time of the varied photo absorber was most significantly affect the surface roughness values and the solidification layer time regardless the layer thickness. This work represents that photo absorber composition solution gave a different characteristics for 3D microstructure fabrication.


2012 ◽  
Vol 159 ◽  
pp. 109-114 ◽  
Author(s):  
Raman Ibrahim ◽  
Ibrahim Raman ◽  
Mohd Hafizul Hanif Ramlee ◽  
Mohammad Asraf Shaik Mohamed ◽  
Mustaffa Ibrahim ◽  
...  

This paper presents a research progress on composition photoabsorber effect the solidification time and layer thickness of 3D structures fabrication using Liquid Crystal Display (LCD) projector as energy light source to initiate the photoreactive polymer. The polymer based material with composition of 1,6-Hexanediol dicrylate, Phenylbis(2,4,6-trimethylbenzoyl)- phosphine oxide with varied Sudan I concentrations was used to build 3D structures. The structure was fabricated using a three different photo absorber composition of Sudan I then the photoreactive polymer solidification phe¬nomena was evaluated. Based on the result obtained, higher exposed time of the photo absorber will reduced the surface roughness values and increased the solidification layer time. This work represents that photo absorber composition solution gave a different characteristics for 3D microstructure fabrication.


2018 ◽  
Vol 32 (4) ◽  
pp. 182-190 ◽  
Author(s):  
Kenta Matsumura ◽  
Koichi Shimizu ◽  
Peter Rolfe ◽  
Masanori Kakimoto ◽  
Takehiro Yamakoshi

Abstract. Pulse volume (PV) and its related measures, such as modified normalized pulse volume (mNPV), direct-current component (DC), and pulse rate (PR), derived from the finger-photoplethysmogram (FPPG), are useful psychophysiological measures. Although considerable uncertainties exist in finger-photoplethysmography, little is known about the extent of the adverse effects on the measures. In this study, we therefore examined the inter-method reliability of each index across sensor positions and light intensities, which are major disturbance factors of FPPG. From the tips of the index fingers of 12 participants in a resting state, three simultaneous FPPGs having overlapping optical paths were recorded, with their light intensity being changed in three steps. The analysis revealed that the minimum values of three coefficients of Cronbach’s α for ln PV, ln mNPV, ln DC, and PR across positions were .948, .850, .922, and 1.000, respectively, and that those across intensities were .774, .985, .485, and .998, respectively. These findings suggest that ln mNPV and PR can be used for psychophysiological studies irrespective of minor differences in sensor attachment positions and light source intensity, whereas and ln DC can also be used for such studies but under the condition of light intensity being fixed.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4329
Author(s):  
Atif H. Asghar ◽  
Ahmed Rida Galaly

An experimental study was performed on a low-density plasma discharge using two different configurations of the plasma cell cathode, namely, the one mesh system electrodes (OMSE) and the one mesh and three system electrodes (OMTSE), to determine the electrical characteristics of the plasma such as current–voltage characteristics, breakdown voltage (VB), Paschen curves, current density (J), cathode fall thickness (dc), and electron density of the treated sample. The influence of the electrical characteristics of the plasma fluid in the cathode fall region for different cathode configuration cells (OMSE and OMTSE) on the performance quality of a surgical gown was studied to determine surface modification, treatment efficiency, exposure time, wettability property, and mechanical properties. Over a very short exposure time, the treatment efficiency for the surgical gown surface of plasma over the mesh cathode at a distance equivalent to the cathode fall distance dc values of the OMTSE and for OMSE reached a maximum. The wettability property decreased from 90 to 40% for OMTSE over a 180 s exposure time and decreased from 90 to 10% for OMSE over a 160 s exposure time. The mechanisms of each stage of surgical gown treatment by plasma are described. In this study, the mechanical properties of the untreated and treated surgical gown samples such as the tensile strength and elongation percentage, ultimate tensile strength, yield strength, strain hardening, resilience, toughness, and fracture (breaking) point were studied. Plasma had a more positive effect on the mechanical properties of the OMSE reactor than those of the OMTSE reactor.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2354
Author(s):  
Jimmy Jiun-Ming Su ◽  
Chih-Hsin Lin ◽  
Hsuan Chen ◽  
Shyh-Yuan Lee ◽  
Yuan-Min Lin

Gelatin methacryloyl (GelMA) hydrogel is a photopolymerizable biomaterial widely used for three-dimensional (3D) cell culture due to its high biocompatibility. However, the drawback of GelMA hydrogel is its poor mechanical properties, which may compromise the feasibility of biofabrication techniques. In this study, a cell-laden GelMA composite hydrogel with a combination incorporating silanized hydroxyapatite (Si-HAp) and a simple and harmless visible light crosslinking system for this hydrogel were developed. The incorporation of Si-HAp into the GelMA hydrogel enhanced the mechanical properties of the composite hydrogel. Moreover, the composite hydrogel exhibited low cytotoxicity and promoted the osteogenic gene expression of embedded MG63 cells and Human bone marrow mesenchymal stem cells (hBMSCs). We also established a maskless lithographic method to fabricate a defined 3D structure under visible light by using a digital light processing projector, and the incorporation of Si-HAp increased the resolution of photolithographic hydrogels. The GelMA-Si-HAp composite hydrogel system can serve as an effective biomaterial in bone regeneration.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jinlong Jiang ◽  
Qiong Wang ◽  
Yubao Wang ◽  
Zhang Xia ◽  
Hua Yang ◽  
...  

The titanium- and silicon-codoped a-C:H films were prepared at different applied bias voltage by magnetron sputtering TiSi target in argon and methane mixture atmosphere. The influence of the applied bias voltage on the composition, surface morphology, structure, and mechanical properties of the films was investigated by XPS, AFM, Raman, FTIR spectroscopy, and nanoindenter. The tribological properties of the films were characterized on an UMT-2MT tribometer. The results demonstrated that the film became smoother and denser with increasing the applied bias voltage up to −200 V, whereas surface roughness increased due to the enhancement of ion bombardment as the applied bias voltage further increased. The sp3carbon fraction in the films monotonously decreased with increasing the applied bias voltage. The film exhibited moderate hardness and the superior tribological properties at the applied bias voltage of −100 V. The tribological behaviors are correlated to the H/E or H3/E2ratio of the films.


Sign in / Sign up

Export Citation Format

Share Document