Machining Performance of CBN Cutting Tools for Hard Turning of 100Cr6 Bearing Steel

2014 ◽  
Vol 474 ◽  
pp. 333-338
Author(s):  
János Kundrák ◽  
László Ráczkövi ◽  
Károly Gyáni

This article presents the examination of cutting performance of a low CBN content cutting tool in the case of hard turning of 100Cr6 hardened bearing steel. One of the indicators of cutting performance is the wear rate, which can be calculated as a ratio of a measurable geometric parameter of a wear form and some technological parameters (cutting time, cutting length or removed material volume). The wear of CBN cutting tools is characterized by the extent of flank wear hence the wear rates related to cutting time and removed material volume are calculated based on the measured flank wear during the cutting experiments. The alteration of wear rates as a function of flank wear and cutting speed was examined.

2013 ◽  
Vol 581 ◽  
pp. 50-54
Author(s):  
László Ráczkövi

The examination of wear and tool life of CBN cutting tools which are used for hard turning is a emphasized research theme, since the significant proportion of cost of machining associated with cutting tool. In this article we examined the wear of low CBN content cutting tool in case of hard turning of 100Cr6 bearing steel (HRC=62±2). The experiments were carried out with constant depth of cut and feed rate at three different cutting speeds. The flank wear of CBN inserts were measured after predetermined number of passes. The measured flank wear values were described as a function of cutting time and the calculated wear rate as a function of flank wear.The average wear rate were shown at three different cutting speeds.


2011 ◽  
Vol 2 (1) ◽  
pp. 59-65
Author(s):  
G. Fledrich ◽  
I. Pálinkás ◽  
R. Keresztes ◽  
L. Zsidai ◽  
K. Petróczki

In place of brittle ceramics used so far have appeared up-to-date so called tough ceramicmaterials resisting better against mechanical effects [6]. Such material is the zirconium-dioxide, too. Theimportant advantage of hard-turning is the applicability of universal tool. Various outlines can be formed bya tool given. Machining ceramics in case of using traditional machining (turning, milling, drilling) requiresspecial technological conditions (tools, machine-tools, technological parameters, etc.) which are developingpresently [2]. We would like extending our research work in this course, too.To clarify the machinability – turning – of ZrO2 ceramics we developed a cutting force measurements for theapplied CBN and PCD cutting tools. The forces were studied in the function of cutting speed and feed, thesurfaces were analized by SEM and the cutting process was controlled by thermo-camera. The failure ofcutting edges were also studied. The summarized results suggest the possible turning possibilities of ZrO2ceramics.


2019 ◽  
Vol 20 (1) ◽  
pp. 109 ◽  
Author(s):  
Hamdi Aouici ◽  
Mohamed Elbah ◽  
Asma Benkhelladi ◽  
Brahim Fnides ◽  
Lakhdar Boulanouar ◽  
...  

The hard turning process has an attracting interest in different industrial sectors for finishing operations of hard materials. However, it still presents disadvantages with respect to process capability and reliability. This paper describes a comparison of surface roughness, specific cutting force and flank wear between mixed ceramic CC650 (Al2O3 (70%) + TiC (30%)) and reinforced ceramic CC670 (Al2O3 (75%) + SiC (25%)) cutting tools when machining in dry hard turning of AISI 4140, treated at 52 HRC using the response surface methodology (RSM). A mathematical prediction model of the machining responses has been developed in terms of cutting speed, feed rate and cutting time parameters. Experimental observations show that the surface roughness obtained with the mixed ceramic insert significantly improved when compared with reinforced ceramic insert with a ratio of 1.44. In the same way, insert CC650 has better performance compared to reinforced ceramic inserts CC670, in terms of the specific cutting force and flank wear.


2010 ◽  
Vol 443 ◽  
pp. 324-329 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Jin Peng Song

Si3N4/TiN nanocomposite tool and Si3N4/Ti(C7N3) nanocomposite tool were prepared. The cutting performance and wear mechanism of Si3N4-based nanocomposite ceramic tool was investigated by comparison with a commercial sialon ceramic tool in machining of 45 steel. Si3N4-based nanocomposite ceramic tool exhibits the better wear resistance than sialon at the relatively high cutting speed. The increased cutting performance of Si3N4-based nanocomposite ceramic tool is ascribed to the higher mechanical properties. Nano-particles can refine the matrix grains and improve the bonding strength among the matrix grains of Si3N4-based nanocomposite ceramic tool materials. It contributes to an improved wear resistance of the cutting tools during machining.


2011 ◽  
Vol 418-420 ◽  
pp. 1482-1485 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz Al Hazza ◽  
Delvis Agusman ◽  
Agus Geter Edy Sutjipto

The current work presents the development of cost model for tooling during high speed hard turning of AISI 4340 hardened steel using regression analysis. A set of experimental data using ceramic cutting tools, composed approximately of Al2O3 (70%) and TiC (30%) on AISI 4340 heat treated to a hardness of 60 HRC was obtained in the following design boundary: cutting speeds (175-325 m/min), feed rate (0.075-0.125 m/rev), negative rake angle (0 to -12) and depth of cut of (0.1-0.15) mm. The output data is used to develop a new model in predicting the tooling cost using in terms of cutting speed, feed rate, depth of cut and rake angle. Box Behnken Design was used in developing the model. Predictive regression model was found to be capable of good predictions the tooling cost within the boundary design.


2010 ◽  
Vol 431-432 ◽  
pp. 466-469
Author(s):  
Dong Can Zhang ◽  
Bin Shen ◽  
Fang Hong Sun ◽  
Ming Chen ◽  
Zhi Ming Zhang

The diamond and diamond-like carbon (DLC) films were deposited on the cobalt cemented tungsten carbide (WC-Co) cutting tools respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode. The scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD) and Raman spectroscopy were used to characterize the as-deposited diamond and DLC films. To evaluate their cutting performance, comparative turning tests were conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The research results exhibited that diamond and DLC coated inserts had great advantages in cutting tests compared to uncoated insert. The flank wear of the CVD diamond coated insert maintained a very low value about 50μm before the cutting tool failure occurred. For the DLC coated insert, its flank wear always maintained a nearly constant value of 70~200μm during whole 45 minutes turning process. The flank wear of CVD diamond coated insert was lower than that of DLC coated insert before diamond films peeling off.


2018 ◽  
Vol 142 ◽  
pp. 03002
Author(s):  
Yunhai Jia ◽  
Lixin Zhu

Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.


2013 ◽  
Vol 581 ◽  
pp. 261-265 ◽  
Author(s):  
Ottó Szabó

Optimisation of technological processes is an important field of research of machining processes. Honing process, its aim and results are affected more factors. Effectiveness is expressed by the following parameters: accuracy, surface roughness, complex surface quality (integrity),material removal rate, costs and productivity of the process. Developed method helps the technology planning and with the introduced new goodness indicator, investigates and corrects it. Optimization and minimization of costs can be ensured at given technological circumstances and technological parameters. With adjustment of the pressure (p) and the cutting speed (vc) economy of the process can be increased in the factory. Developed method can be applied for machining by other abrasive cutting tools. The paper summarizes new results of this theoretical and experimental research.


2011 ◽  
Vol 325 ◽  
pp. 309-314
Author(s):  
Han Lian Liu ◽  
Ming Hong ◽  
Chuan Zhen Huang ◽  
Bin Zou

TiC-based ceramic cutting tools with three different particle size levels of Al2O3 additives were fabricated and tested. Theses tool materials were identified as TA, TA10A5 and TA30A5 respectively in this study. Another commercial cutting material identified as LT55 was used in this study as baseline to investigate cutting performance by comparing the flank wear size. The experimental results showed that multi-scale nanocomposite ceramic tool TA10A5 had much better wear resistance than the other tools when turning at a lower speed. The wear mechanisms were mainly adhesive wear in the rake face. While cutting at a higher speed, the breakage failure occurred for the tools TA10A5 and TA30A5.


2008 ◽  
Vol 591-593 ◽  
pp. 537-542 ◽  
Author(s):  
M.A. Lanna ◽  
A.M. Abrão ◽  
F. Levy Neto ◽  
Claudinei dos Santos ◽  
Cosme Roberto Moreira Silva

There is a substantial increase on carbon-carbon composites use for engineering applications, considering its high temperature properties and low specific mass. However the machining costs are relatively high, and new cutting tools, mainly ceramics, must be developed to overcome such difficulty, aiming cost reductions. In this work, silicon nitride based ceramics has been prepared , by pressureless sintering of silicon nitride powders and appropriate amounts of Al2O3,Ce2O3, Y2O3 and AlN. Cutting tools were prepared from the sintered materials, with geometry according to ISO1832. Selected cutting tools were also diamond coated by a hot filament-assisted Chemical Vapor Deposition (HFCVD) diamond coating process. Carbon Fiber Reinforced Carbon (CFRP) composites machining was performed, to evaluate the diamond coating influence on machining performance. After the tests, the uncoated tools presented severe flank wear and shorter life than the diamond coated ceramic tools. This flank wear is caused by the abrasive carbon powder generated during the facing operation. On CVD diamond coated α-SiAlON ceramic tools, no flank wear was observed, and the cutting edge remained unmodified, even for severe test conditions, such as high cutting length and speed. Carbon particles, originated from the machined composite, do not promotes diamond film rupture, but instead, acts as lubricant film and reduces composite surface initial roughness.


Sign in / Sign up

Export Citation Format

Share Document