Application of SCES in Improving Dynamic Response of DC Microgrid Bus Voltage

2014 ◽  
Vol 521 ◽  
pp. 431-434
Author(s):  
Yuan Sheng Xiong ◽  
Jian Ming Xu

To improve the stability of DC bus voltage in DC microgrid, and reduce the impact on microgrid equipments by the DC bus voltage fluctuations, a supercapacitor energy storage (SCES) is designed to connect to the DC bus by the bi-directional converter. The controller is designed by the feedforward control and proportional method with the deadband. The great load disturbance is simulated in PSIM software when the DC microgrid operates in the grid-connected rectification mode. The simulation results show that SCES under the proposed control strategy can reduce the fluctuation range of the DC bus voltage in a wide range of load disturbances, and the dynamic response performance of DC bus voltage is improved.

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2926 ◽  
Author(s):  
Mahmoud Saleh ◽  
Yusef Esa ◽  
Mohamed El Hariri ◽  
Ahmed Mohamed

This paper provides an extensive review of the conducted research regarding various microgrids (MGs) control techniques and the impact of Information Communication Technology (ICT) degradation on MGs performance and control. Additionally, this paper sheds the light on the research gaps and challenges that are to be explored regarding ICT intrinsic-limitations impact on MGs operations and enhancing MGs control. Based on this assessment, it offers future prospects regarding the impact of ICT latencies on MGs and, consequently, on the smart grid. Finally, this paper introduces a case study to show the significance and examine the effect of wireless communication technologies latency on the converters and the DC bus voltage of a centralized controlled DC MG. A DC microgrid with its communication-based control scheme was modeled to achieve this goal. The MATLAB simulation results show that the latency impact may be severe on the converter switches and the DC bus voltage. Additionally, the results show that the latency impact varies depending on the design of the MG and its operational conditions before the latency occurs.


2014 ◽  
Vol 536-537 ◽  
pp. 1219-1222
Author(s):  
Yuan Sheng Xiong ◽  
Shang Xing Ma

Three-phase bidirectional AC/DC converter acts as a key part in DC microgrid. To improve the stability of DC bus voltage for the grid-connected mode in DC microgrid, a sliding mode or PI controller based on SVPWM modulator is designed for the bidirectional AC/DC converter in inverter mode. When the error between grid-connected current reference value and actual value is larger than the threshold value, the sliding mode controller is used. Otherwise, the PI controller is adopted. The great grid-connected current reference value fluctuation is simulated in PSIM software when the DC microgrid operates in the grid-connected inverter mode. The simulation results show that the gird-connected current actual value can fast track with the reference value. Then the dynamic response performance of DC bus voltage is improved.


2018 ◽  
Vol 8 (9) ◽  
pp. 1525
Author(s):  
Ahmad M. A. Malkawi ◽  
Luiz A. C. Lopes

DC bus voltage signaling (DBS) and droop control are frequently employed in DC nano and microgrids with distributed energy resources (DERs) operating in a decentralized way. This approach is effective in enforcing the desired contributions of power sources and energy storage systems (ESSs) in steady-state conditions. The use of supercapacitors (SCs) along with batteries in a hybrid energy storage system (HESS) can mitigate the impact of high and fast current variations on the losses and lifetime of the battery units. However, by controlling the HESS as a single unit, one forfeits the potential contribution of the SC and its high power capabilities to dynamically improve voltage regulation in a DC nanogrid. This paper discusses an approach where the SC interface is controlled independently from the battery interface, with a small droop factor and a high pass filter (HPF), to produce high and short current pulses and smooth DC bus voltage variations due to sudden power imbalances in the DC nanogrid. Experimental results are presented to show that, unlike in a conventional HESS, the SC unit can be used to improve the dynamic voltage regulation of the DC nanogrid and, indirectly, mitigate the high and fast current variations in the battery.


2014 ◽  
Vol 602-605 ◽  
pp. 277-282
Author(s):  
Bin Qu Yan ◽  
Shu Mei Chen ◽  
Chuan Ming Chen

In order to develop a new type of high-performance axial piston pump, the impact of the dynamic response characteristics of piston chamber pressure to the stability of cylinder block were analyzed. This paper a new type of valve plate which combined two fixed throttling grooves with a triangular groove (called three-level gain) was put forward so as to reducing the excessive pressure adjustment of the dynamic response of piston chamber pressure and improving the stability of cylinder block. The simulation results indicate that not only the cavitation is reduced, but also the stability of the dynamic response of piston chamber pressure is remained at various swash plate angle which makes it applicable to variable piston pump. The results also indicate that the flow pulsation of variable displacement pump is significantly decreased in different operating conditions.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3422
Author(s):  
Daojun Zha ◽  
Qingsong Wang ◽  
Ming Cheng ◽  
Fujin Deng ◽  
Giuseppe Buja

DC electric springs (DCESs) have been recently developed to improve the voltage stability of a DC microgrid. A lately proposed DCES topology is comprised of a DC/DC three port converter (TPC), a bi-directional buck-boost converter (BBC) and a battery, and is arranged as follows: The TPC input port is fed by a renewable energy source (RES) whilst the two TPC output ports supply a non-critical load (NCL) and a critical load (CL) separately; in turn, BBC together with the battery constitutes the DCES energy storage unit (ESU) and is connected in parallel to CL. In this paper, a set of DCESs with such a topology and with their CLs connected to a common DC bus is considered. The control of the DCESs is built up around a distributed cooperative system having two control levels, namely primary and secondary, each of them endowed with algorithms committed to specific tasks. The structure of the control levels is explicated and their parameters are designed. The control system is applied to a DCES set taken as a study-case and tested by simulation. The results of the tests show the excellent performance of the control system in both regulating the CL DC bus voltage and keeping the state-of-charge of the battery within predefined limits.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2035 ◽  
Author(s):  
Phatiphat Thounthong ◽  
Pongsiri Mungporn ◽  
Serge Pierfederici ◽  
Damien Guilbert ◽  
Nicu Bizon

DC microgrid applications include electric vehicle systems, shipboard power systems, and More Electric Aircraft (MEA), which produce power at a low voltage level. Rapid developments in hydrogen fuel cell (FC) energy have extended the applications of multi-phase parallel interleaved step-up converters in stabilizing DC bus voltage. The cascade architecture of power converters in DC microgrids may lead to large oscillation and even risks of instability given that the load converters considered as loads feature constant power load (CPL) characteristics. In this article, the output DC bus voltage stabilization and the current sharing of a multi-phase parallel interleaved FC boost converter is presented. The extended Port-Hamiltonian (pH) form has been proposed with the robust controller by adding an integrator action based on the Lyapunov−Energy function, named “Adaptive Hamiltonian PI controller”. The stability and robustness of the designed controller have been estimated by using Mathematica and Matlab/Simulink environments and successfully authenticated by performing experimental results in the laboratory. The results have been obtained using a 2.5 kW prototype FC converter (by two-phase parallel interleaved boost converters) with a dSPACE MicroLabBox platform. The FC main source system is based on a fuel reformer engine that transforms fuel methanol and water into hydrogen gas H2 to a polymer electrolyte membrane FC stack (50 V, 2.5 kW).


Sign in / Sign up

Export Citation Format

Share Document