The through Arch Rib Road Bridge Numerical Simulation of Blasting Demolition

2014 ◽  
Vol 533 ◽  
pp. 175-180
Author(s):  
En An Chi ◽  
Chun Ming Xie ◽  
Ming Sheng Zhao ◽  
Jun Yang ◽  
Tie Jun Tao

In order to ensure one through arch rib road bridge blasting demolition will go well, using separate common node reinforced concrete model, numerical simulate the process of bridge collapsed and disintegrate, at the same time, analyze the stress state of steel and concrete unit in detail. The simulation results show that separate common node model could reflect the mechanical properties difference of steel and concrete materials; destruction of the support part of bridge and joint parts reserved , meanwhile, blasting treatment of the joint parts of derrick and arches, also arch center derrick and deck beams, arch springing hinge inside pier reserved on the left, it can ensure the bridge collapsed and broken fully, and can reduce the stack height of bridge collapsed in the river. The research considers that researching on structure collapse process by numerical simulation method not only reappear the process of collapse, but also forecast collapse result in schematic design phase. It will become the important means of study the structure mechanics process of blasting demolition and guide assisted the design of structure blasting demolition, which has important engineering practical value.

2007 ◽  
Vol 127 ◽  
pp. 259-264
Author(s):  
Hong Yuan Fang ◽  
Cheng Iei Fan

Numerical simulation method is employed in the article to analyze the stress field of thick 7B04 aluminum alloy board during manufacturing procedure of solution treatment, calendaring and stretching. The simulation results show that the surface of the board endures compressive stress while the core segment endures tensile stress, and the distribution of the stress is very inhomogeneous. The calendaring procedure helps to decrease the stress and redistribute the stress uniformly, but it also leads to stress concentration at the two ends of the board, which engenders bad influence on the subsequent processing. The board deforms plastically when being stretched, thus the stress decreases greatly and is redistributed uniformly.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1053
Author(s):  
Chengmin Chen ◽  
Guangxia Liu ◽  
Lei Zhang ◽  
Guodong Wang ◽  
Yanjin Hou ◽  
...  

In this paper, a transient numerical simulation method is used to investigate the effects of the two furnace configurations on the thermal field: the shape of the melt–crystal (M/C) interface and the thermal stress in the growing multicrystalline ingot. First, four different power ratios (top power to side power) are investigated, and then three positions (i.e., the vertical, angled, and horizontal positions) of the insulation block are compared with the conventional setup. The power ratio simulation results show that with a descending power ratio, the M/C interface becomes flatter and the thermal stress in the solidified ingot is lower. In our cases, a power ratio of 1:3–1:4 is more feasible for high-quality ingot. The block’s position simulation results indicate that the horizontal block can more effectively reduce the radial temperature gradient, resulting in a flatter M/C interface and lower thermal stress.


Author(s):  
Z. Z. Kang ◽  
B. M. Sun ◽  
Y. H. Guo ◽  
W. Zhang ◽  
H. Q. Wei

Numerical simulation method is employed in this article to investigate various high-temperature air direct-ignition processes of pulverized coal (PC). Several important factors are analyzed, which are the inlet velocity of primary air flow, PC concentration and the velocity and temperature of high temperature air. The flow, combustion and heat transfer in high temperature air oil-free ignition burner can also be obtained from the simulation results, which are in accordance with the experimental data. The research provides guidance for structure improvement and operation optimization of burner.


2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Dong-ze Qin ◽  
Wei Zhang ◽  
Shu-Yun Zhang ◽  
Tian-Ji Guo ◽  
Shui-Yuan Pei ◽  
...  

The humanitarian damage caused by the unexploded submunitions is one of the hot issues of concern to the international community at present. A portion of the submunition that did not explode was caused by a break at the connection between the ribbon riveting and the fuze. According to the physical structure of the submunition and the trajectory into which it was ejected, we analyzed the forces of the submunition in flight, deduced the related mathematical models, and clarify the key elements of the mechanics. In this paper, the commercial simulation software was used to calculate the mechanical properties of the ribbon. And the variation regularity between drop velocity and straightening force of ribbon are revealed. And the response characteristics of different material ribbon with different sizes of riveting holes and riveting joints under tensile action were simulated. The simulation results show that, in the trajectory environment with 30 m/s~55 m/s typical stream speed, the tensile force of the ribbon is less than 300 N, and the application concentration of the connecting parts of the riveting joint and the ribbon will not cause the failure of the kevlar ribbon, but it will cause the failure of the nylon ribbon. In order to verify the variation of the tension of kevlar ribbons in different trajectory environments, we designed the experimental scheme of tension test of the ribbon straightening section of submunition and conducted experiments. Experimental results and numerical simulation results revealed the same law. This paper provides effective technical support for solving the problem of unexploded submunitions.


1994 ◽  
Vol 37 (4) ◽  
pp. 21-27
Author(s):  
Guoping Xie ◽  
Yoshihide Suwa

Uniformity of airflow distribution in a unidirectional flow cleanroom has been studied experimentally and numerically. The influence of the height of the plenum chamber and the velocity of airflow introduced into the chamber on the airflow uniformity are investigated experimentally. In addition, a numerical simulation method to predict airflow uniformity is proposed, taking into account the characteristics of the pressure loss of the filter. The calculation domain in this study includes not only the cleanroom but also the plenum chamber and the exhaust chamber. The validity of the numerical method is also verified by comparing the simulation results with the experiments. Finally, the numerical method is used to obtain an appropriate height for the plenum chamber.


2012 ◽  
Vol 217-219 ◽  
pp. 1460-1464 ◽  
Author(s):  
Jing Xie ◽  
Yi Tang ◽  
Jin Feng Wang ◽  
Chen Miao ◽  
Yong Yan Lin

On the basis of previous work, the simulation condition of cold store was improved to reduce calculation error. The SIMPLE algorithm and Boussineq assumption were used and the turbulent intensity was also set. The numerical simulation results reflected that the temperature distribution was closer to the previous experimental results after using new method. The error between simulation values and experimental values was decreased. The simulation result showed that temperature of corner was highest in the cold store. The temperature change of the cold store in the cooling process could be better predicted by using modified simulation method and the accuracy of numerical simulation of cold store in the cooling process could also be validated.


2014 ◽  
Vol 988 ◽  
pp. 241-244
Author(s):  
Hu Zhu ◽  
Wen Wen Lin ◽  
Jin Lan Bai

The digital simulation method for NC incremental sectional forming is studied and the forming effect of NC incremental integral forming and sectional forming is analyzed through the digital simulation method in this paper. Digital simulation results show that the proposed simulation method for NC incremental sectional forming is reasonable and achievable. The difference of the forming quality between NC incremental sectional forming and integral forming is small. The sectional forming method has feasibility.


2013 ◽  
Vol 781-784 ◽  
pp. 576-579
Author(s):  
Xiu Juan Wang ◽  
Xiu Ting Zheng ◽  
Meng Song ◽  
Xiu Ying Zhao ◽  
Si Zhu Wu

This work studied the influence of different molecular structure of polycarbonate on its properties. Different types of polycarbonate molecular chain models were built by molecular simulation method. By combining experimental and molecular dynamic simulation results, it is concluded that the polycarbonate-OQ2720 has better thermal stability, mechanical properties and optical performance, which is a better choice for aviation materials and manufacturing process.


2016 ◽  
Vol 10 (1) ◽  
pp. 848-858
Author(s):  
Jun Wang ◽  
Yan Yu ◽  
Xinfeng Wei ◽  
Qinghua Gong ◽  
Haixian Xiong

Debris flows are a common natural disaster in mountainous areas and often cause severe casualties and property loss. Debris-flow run-out effects analysis can provide an idea of the spatial risks posed to the downstream area of a debris flow, which is extremely important for local populations’ lives, disaster mitigation and planning the layout of economic construction. The objective of this study is to develop a new method to quantify debris flow run-out effects by combining debris flow simulation results and data for different types of land use within the inundated area. After a three-dimensional numerical simulation platform was established, the numerical simulation method was applied as a modeling tool to simulate the inundated areas and final buried depths under rainfalls with different return periods. The simulated result for flow depth under a 100-year return period rainfall event was validated based on field measurements. Finally, the debris-flow run-out effects under different return periods were analyzed by combining the simulation results and land use data. The proposed method can enhance the accuracy of debris-flow spatial risk assessment and has great value for application.


Sign in / Sign up

Export Citation Format

Share Document