Research on Preparation and Properties of New Type Desulfurization Gypsum Block

2014 ◽  
Vol 540 ◽  
pp. 217-220
Author(s):  
Chuan Wei Du ◽  
Ying Lv ◽  
Guo Zhong Li

Desulfurization building gypsum was used as the main gelled material and fly ash was used as filler to prepare the new type desulfurization gypsum block. the mechanical properties of the new type desulfurization gypsum block was improved by adding compound excitation agent into the desulphurization gypsum-fly ash cementing material to stimulate its activity. The water resistant performance of the new type desulfurization gypsum block was improved through adding wax-alcohol compound waterproofing agent into it. Experimental results show that when the filling amount of fly ash was 20%(the quality of desulfurization gypsum), the impact on the strength of gypsum was minimal; when the dosage of compound excitation agent was 1.75%, the excitation effect of desulphurization gypsum-fly ash cementing material was best; when the dosage of wax-alcohol compound waterproofing agent was 0.4%, the water resistance of new desulfurization gypsum block was optimal.

2013 ◽  
Vol 465-466 ◽  
pp. 962-966 ◽  
Author(s):  
Mohd Pahmi bin Saiman ◽  
Mohd Saidin Bin Wahab ◽  
Mat Uzir Wahit

To produce a good quality of dry fabric for reinforced material in a natural-based polymer composite, yarn linear density should be in consideration. A woven kenaf dry fabric with three different linear densities of 276tex, 413.4tex and 759tex were produced. The fabrics with different linear densities were been optimize with the assistance of WiseTex software. The optimized dry fabrics were infused with unsaturated polyester to produce composite panel using vacuum infusion process. The composites properties were tested on the tensile strength, flexural strength and the impact strength. The result shows that the mechanical properties of the composite increased when the yarn linear densities increased.


“Slicing tool” or “Slicing Software” computes the intersection curves of models and slicing planes. They improve the quality of the model being printed when given in the form of STL file. Upon analyzing a specimen that has been printed using two different slicing tools, there was a drastic variation on account of the mechanical properties of the specimen. The ultimate tensile strength and the surface roughness of the material vary from one tool to another. This paper reports an investigation and analysis of the variation in the ultimate tensile strength and the surface roughness of the specimen, given that the 3D printer and the model being printed is the same, with a variation of usage of slicing software. This analysis includes ReplicatorG, Flashprint as the two different slicing tools that are used for slicing of the model. The variation in the ultimate tensile strength and the surface roughness are measured and represented statistically through graphs. An appropriate decisive conclusion was drawn on the basis of the observations and analysis of the experiment on relevance to the behavior and mechanical properties of the specimen.


2020 ◽  
Vol 299 ◽  
pp. 335-339
Author(s):  
Sergei I. Platov ◽  
V.A. Nekit ◽  
M.L. Krasnov

A study of the mechanical properties of the finished metal products was carried out. All types of metal products are subjected to continuous quality control, both on the production output at the manufacturer of billets, and on the production entrance at the consumer of metal. Control subject are: strength characteristics (tensile strength σв and yield stress σ02 and the characteristics of plasticity (relative elongation δ and relative necking ψ). The pipe steels have another important controlled characteristic: the impact toughness КСU-60. All the test methods are the destroying ones and are characterized by high complexity. The task of reducing the types of tests, the introduction of a comprehensive indicator of product quality is an urgent technical task. The purpose of this work is to study the regularities of changes in the indicators that determine the quality of the sheet metal from the pipe steel.


Author(s):  
M.D. Ikramullah Khan ◽  
Mohd Abbas Abdy Sayyed ◽  
G. Swamy Yadav ◽  
S. Haripriya Varma

2014 ◽  
Vol 1000 ◽  
pp. 59-62
Author(s):  
Hana Kalousová ◽  
Eva Bartoníčková ◽  
Tomáš Opravil

The presented paper deals with the issue of influence of storage conditions on the quality of conventional fly ashes which are produced by combustion of lignite. These ashes were stockpiled for long time. A borehole for sampling was made in the fly ash stock-pile. Total depth of the borehole was 20 m. Samples of fly ashes taken from every single meter were analyzed and next mechanical properties and the volume stability of materials containing these fly ashes were tested. The quality of fly ashes especially with respect to the possibility to use them as components of pastes, mortars and concretes as pozzolanic admixture or fine filler was evaluated.


2018 ◽  
Vol 272 ◽  
pp. 107-114 ◽  
Author(s):  
Rudolf Hela ◽  
Martin Ťažký

At the beginning of 2016, the legislation for regulating and reducing the emission of exhaust gases with regard to reducing nitrogen oxides came into force. The articles published to date point to the possibility of increased ammonium salt content in fly ash that has undergone a selective non-catalytic reduction process. This paper addresses other possible negative impacts of the reduction process for nitrogen oxide on the physico-mechanical properties of high-temperature fly ash, especially the morphology of its grains and its impact on the rheology of the composite and the impact on the efficiency index.


2009 ◽  
Vol 294 ◽  
pp. 27-38 ◽  
Author(s):  
Fabian Ferrano ◽  
Marco Speich ◽  
Wolfgang Rimkus ◽  
Markus Merkel ◽  
Andreas Öchsner

This paper investigates the mechanical properties of a new type of hollow sphere structure. For this new type, the sphere shell is perforated by several holes in order to open up the inner sphere volume and surface. The mechanical behaviour of perforated sphere structures under large deformations and strains in a primitive cubic arrangement is numerically evaluated by using the finite element method for different hole diameters and different joining techniques.


Author(s):  
Vankudothu Bhikshma ◽  
Kandiraju Promodkumar ◽  
Putta Panduranghiah

The demand for concrete is increasing day by day. As the consumption of cement is increased, environmental issues arise due to the release of CO2 during the manufacturing of cement. The objective of this research work is to produce a pollution free concrete with a combination of fly ash and GGBS (Ground granulated blast furnace slag) and without the use of cement. In this paper an attempt was made to study the mechanical properties of high strength geo-polymer concrete of grade M60 using GGBS, fly ash and micro silica. The testing program was planned for the mechanical properties of geo-polymer concrete and flexural behavior of corresponding beams. The experimental results indicated that the geo-polymer concrete M60 grade has a compressive strength of 70.45 MPa at the age of 28 days cured at ambient condition. Further, flexural strength and split tensile strengths for M60 grade high strength geo-polymer concrete at 28 days were observed to be 5.45 MPa and 3.63 MPa respectively. The modulus of elasticity was higher than the theoretical value proposed by IS 456-2000. It was also observed that the load carrying capacity of M60 grade high strength geo-polymer concrete found to be more than corresponding grade conventional concrete. The load-deflection, moment-curvature relationships were studied. The experimental results were encouraging to continue for further research in the area high strength geo-polymer concrete.


Clay Minerals ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 213-223 ◽  
Author(s):  
V. Lilkov ◽  
I. Rostovsky ◽  
O. Petrov

AbstractCement mortars and concretes incorporating clinoptilolite, silica fume and fly ash were investigated for changes in their physical and mechanical properties. It was found that additions of 10% clinoptilolite and 10% Pozzolite (1:1 mixture of silica fume and fly ash) were optimal for improvement of the quality of the hardened products, giving 8% and 13% increases in flexural and compressive strength respectively. The specific pore volume of the mortars incorporating zeolite decreased between the 28th and 180th day to levels below the values for the control composition due to the fact that clinoptilolite exhibits its pozzolanic activity later in the hydration. In these later stages, pores with radii below 500 nm increased at the expense of larger pores. The change in the pore-size distribution between the first and sixth months of hydration occurs mostly in the mortars with added zeolite.


2015 ◽  
Vol 754-755 ◽  
pp. 290-295 ◽  
Author(s):  
Alida Abdullah ◽  
Ku Amirrul Rahman Ku Yin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin ◽  
Mien Van Tran

This study was conducted to compare the mechanical properties of fly ash artificial geopolymer aggregates with natural aggregate (rock) in term of its impact strength, specific gravity and water absorption.The raw materials used were fly ash, sodium hydroxide, sodium silicate and natural aggregate. After the artificial geopolymer aggregate has been produced, its water absorption, specific gravity and aggregate impact test has been done. All results obtained were compared to natural aggregate. The result shows that the fly ash geopolymer aggregate are lighter than natural aggregate in term of its specific gravity. The impact value for fly ash artificial geopolymer aggregate slightly high compared to natural aggregate while it has high water absorption value compared to natural aggregate. As conclusion, the fly ash artificial geopolymer aggregate can be used as one of the construction materials in concrete as an alternative for coarse aggregate besides natural aggregate with more lightweight properties.


Sign in / Sign up

Export Citation Format

Share Document