Aluminium Self-Piercing Rivet's Failure: Testing and Numerical Analyses

2014 ◽  
Vol 541-542 ◽  
pp. 1355-1359 ◽  
Author(s):  
Nguyen Hieu Hoang ◽  
Magnus Langseth

In the present study, the behaviour of aluminium rivets in alloy AA7278-T6 during the riveting process when used to join two aluminium plates was investigated experimentally and numerically. It was observed by Hoang et al. that a rivet in alloy AA7278-T6 may fracture in shear when undergoing high pressure during the riveting process. A damage-based failure model was adopted for studying the shear fracture behaviour of the rivet. A calibration procedure of the damage parameters was suggested based on two tests (i.e. material tension tests and rivet compression tests). The model was implemented in the finite element code LS-DYNA as a user-defined subroutine. Numerical results showed that the model seemed to be able to capture the shear fracture mode in the rivets as observed in the tests.

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7792
Author(s):  
Andrea Zanichelli ◽  
Angélica Colpo ◽  
Leandro Friedrich ◽  
Ignacio Iturrioz ◽  
Andrea Carpinteri ◽  
...  

In this paper, a novel implementation of the Lattice Discrete Element Method (LDEM) is proposed: in particular, the LDEM is implemented in the Ansys LS-DYNA finite element code. Such an implementation is employed to evaluate the fracture behaviour of sandwich panels under bending. First, the novel hybrid model proposed is validated by simulating some three-point bending experimental tests carried out at the University of Parma, and then it is used to model the fracture behaviour of sandwich panels under four-point bending. Failure mechanisms, damage locations, and load-deflection curves are numerically determined by employing such a novel model, and the results show a good agreement with the available experimental findings.


Author(s):  
S. G. Qu ◽  
W. J. Deng

This work is focused on the development of a numerical model with the help of the finite element method to predict the magnitude and distribution of deformation associated with the self-piercing riveting process. A 2D axisymmetric model of the self-piercing riveting process is presented using the commercial implicit finite element code MSC.Superform. The flow stress of the work-material is taken as a function of strain, strain-rate and temperature. The shape of the rivet joint and the stress, strain and damage in both of the rivet and workpiece sheets are determined. The information obtained from the process simulation, such as force, metal flow and details of die fill are discussed. The calculated punching forces and the shape of the rivet joint are compared with experimental data and found to be in good agreement. Defects in the riveting are analyzed and are categorized into penetration, necking and lap formation. The effects of workpiece temperature on punching force were also discussed.


Author(s):  
Steven Hill ◽  
Richard P.Turner

AbstractA series of ring compression tests using BS970:708M40 alloy steel samples were studied. These tests were conducted using a 2-factor soak-temperature variable, namely 1030 °C and 1300 °C, and a 4-factor lubricant variable consisting of unlubricated samples, synthetic water-based, graphite water-based, and graphite and molybdenum disulphide viscous grease. The lubricant agents were all applied to the tool/billet interface. Process variables such as blow force and heating were controlled with the use of a gravitationally operated drop hammer and an automated programmable induction-heating unit. This matrix of the experimental parameters offered a sound base for exploring dominant factors impacting upon bulk deformation. This deformation was measured using fully calibrated equipment and then systematically recorded. A finite element modelling framework was developed to further improve the thermo-mechanical deformation process understanding, with finite element (FE) predictions validated through experimental measurement. Through the combined experimental and FE work, it was shown that temperature variation in the experimental parameter matrix played a larger role in determining deformation than the lubrication agent. Additionally, the use of synthetic and graphite water-based lubricants does not necessarily produce greater deformation when used in high-temperature forgings due to the lubricants breaking down, evaporating, or inducing rapid billet cooling as a result of the carrier used (water). Graphite-molybdenum disulphate grease far outperforms the other lubricants used in this trial in reducing friction and allowing deformation to occur across a die-face.


2012 ◽  
Vol 430-432 ◽  
pp. 828-833
Author(s):  
Qiu Sheng Ma ◽  
Yi Cai ◽  
Dong Xing Tian

In this paper, based on ANSYS the topology optimization design for high pressure storage tank was studied by the means of the finite element structural analysis and optimization. the finite element model for optimization design was established. The design variables influence factors and rules on the optimization results are summarized. according to the calculation results the optimal design result for tank is determined considering the manufacturing and processing. The calculation results show that the method is effective in optimization design and provide the basis to further design high pressure tank.


2001 ◽  
Vol 32 (10-11) ◽  
pp. 759-767 ◽  
Author(s):  
B Patzák ◽  
Z Bittnar

2013 ◽  
Vol 470 ◽  
pp. 866-870
Author(s):  
Wei He ◽  
Yan Dong Liu ◽  
Guo Xing Wang

Based on the actual project example of high pressure gas pipeline crossing earthquake rupture area, the paper shows and explains the way to make stress analysis and strength checking calculation for the high pressure gas pipeline in the earthquake rupture area by the method of finite element.


Sign in / Sign up

Export Citation Format

Share Document