Research on Microstructure Evolution of Spray Forming FVS0812 Alloy Varies with Temperature

2014 ◽  
Vol 543-547 ◽  
pp. 3729-3732
Author(s):  
Rong Hua Zhang ◽  
Biao Wu ◽  
Xiao Ping Zheng

Heat-resistant FVS0812 alloys were prepared by spray forming technique. The effect of temperature on microstructure the alloys was studied by optical microscope (OM), transmission electron microscope (TEM) with energy dispersive spectrometer (EDS), differential scanning calorimeter (DSC) in this paper. The research results show that the microstructure of the material doesnt change obviously after being hold for 3 hours at 420°C temperature. When the temperature is over 420°C, the second coarse phases are found in the alloy. The studies on the microstructure of the alloy exposed at 400°C for 100 hours show that the alloy has excellent high temperature stability.

2011 ◽  
Vol 287-290 ◽  
pp. 43-48 ◽  
Author(s):  
Rong Hua Zhang ◽  
Bao Hong Zhu ◽  
Yon Gan Zhang ◽  
Biao Wu

Heat-resistant Al-8.5Fe-1.3V-1.7Si alloys were prepared by spray forming technique. The effect of temperature on microstructure and mechanical properties of the alloys was studied by optical microscope(OM), transmission electron microscope(TEM) with energy dispersive spectrometer(EDS), X-ray diffraction(XRD), differential scanning calorimeter(DSC) in this paper. The research results show that the microstructure of the material doesn’t change obviously after being hold for 3 hours at 420°C temperature. When the temperature is over 420°C, the second coarse phases are found in the alloy. The study on the microstructure of the alloy exposed at 400°C for 100 hours shows that the alloy has excellent high temperature stability. And the main second phase in the alloy is spherical a-Al12(Fe,V)3Si, with a little other phases such as Al13Fe4, Al6Fe, Al9FeSi3 and so on.


2014 ◽  
Vol 809-810 ◽  
pp. 384-389
Author(s):  
Lang He ◽  
Yu Tang

High temperature thermoplastic of 50Mn2V casting slab was tested by Gleeble-1500 thermal simulator machine. The morphology, microstructure and composition of fracture surfacewere observed and analyzed by optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).The results show that, there are two brittle temperature zones of 50Mn2V casting slab at the temperature of 600~950°C and 1300~1465°C, respectively, The section shrinkaging rate is less than 60%. The fracture mode changes from mixed one dominated by intergranular to toughness transgranular one with the increase of temperature at the range of 600~1250°C. However, the fracture is along with the solid-liquid phase at the range of 1300°C~ melting point.


2010 ◽  
Vol 82 (11) ◽  
pp. 2097-2109 ◽  
Author(s):  
Ujjal K. Gautam ◽  
Yoshio Bando ◽  
Pedro M. F. J. Costa ◽  
Xiaosheng Fang ◽  
Benjamin Dierre ◽  
...  

Since the discovery of carbon nanotubes (CNTs) in 1991, widespread research has been carried out to understand their useful physical and electronic properties and also to explore their use in devices. CNTs have many unique properties such as tunable electrical resistance, mechanical robustness, and high thermal conductivity, which when combined with other inorganic materials such as phosphors or superconductors could lead to hetero-structures with diverse functionality. We have been able to obtain mass production of such materials wherein CNTs form core-shell heterostructures with metals, semiconductors, insulators, and even metal-semiconductor heterojunctions. The emerging strategy employs a high-temperature chemical vapor deposition (CVD) technique and high heating rates. Interestingly, due to their high temperature stability, CNTs can act as a nanoreactor for production of exotic materials inside it. In this article, we take ZnS-filled CNTs as an example to explain our synthesis strategy. We explore the optical behavior of these complex materials, analyzing both their luminescence and degradation upon exposure to an electron beam. In addition, the mechanical response of filled CNTs has been evaluated individually inside a transmission electron microscope fitted with an atomic force microscopy–transmission electron microscopy (AFM–TEM) sample holder. Many applications can be envisioned for these nanostructures ranging from nanothermometers to photo-protective storage and delivery devices.


2013 ◽  
Vol 749 ◽  
pp. 7-12 ◽  
Author(s):  
Hong Po Wang ◽  
Bo Peng ◽  
Li Feng Sun ◽  
Cheng Jun Liu ◽  
Mao Fa Jiang

As stabilization elements added into ferritic stainless steels, various kinds of precipitates of niobium and titanium will form and have great effect on their microstructure, which has great effect on the mechanical and corrosion properties of the final products. Combined with thermodynamic calculation by FactSage software, microstructure and precipitates of ferritic stainless steels containing different niobium and titanium were investigated by optical microscope, scanning electron microscope, transmission electron microscope and energy dispersive spectrometer. The results show that titanium mainly exists in form of TiN but niobium exists mainly in form of NbC. Moreover, a certain amount of NbN particles precipitate when there is not enough titanium to react with nitrogen. TiN particles with size of 2μm~8μm promote the recrystallization but Nb-rich precipitates with size of less than 500nm suppress the recrystallization in the process of annealing.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS NO6455 is a nickel-chromium-molybdenum alloy with outstanding high-temperature stability as shown by high ductility and corrosion resistance even after long-time aging in the range 1200-1900 F. The alloy also has excellent resistance to stress-corrosion cracking and to oxidizing atmospheres up to 1900 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-367. Producer or source: Nickel and nickel alloy producers.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract UNS No. R54620 is an alpha-beta titanium alloy. It has an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high strength is required. It has outstanding advantages for long-time use at temperatures to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-86. Producer or source: Titanium alloy mills.


Sign in / Sign up

Export Citation Format

Share Document