A Novel Cluster Based Survivable Routing Protocol for Wireless Sensor Network

2014 ◽  
Vol 556-562 ◽  
pp. 5577-5581
Author(s):  
Hai Tao Wang ◽  
Hui Chen ◽  
Xue Ping Zhang ◽  
Li Yan

Sensor nodes easily suffer from failure, attack or capture because of the limited energy, storage, communication ability, complex and severe network environment when WSN is applied to emergency or battlefield environment. Thus, the basic scout mission is influenced. In this paper, a survivability route protocol named SRPC in cluster-based WSN is put forward. The protocol uses key negotiation and identity authentication mechanism to resist the attacks of malicious nodes; when the main cluster head is destroyed, monitoring data will be transmitted to the base station by the backup cluster head chain. The simulation results show that, SRPC protocol can not only resist the attacks of the enemy malicious nodes based on energy balance, but also assure reliable delivery of the packets after the cluster head is attacked or destroyed. As a result, the survivable ability of WSN in battlefield is improved.

2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Kashif Naseer Qureshi ◽  
Muhammad Umair Bashir ◽  
Jaime Lloret ◽  
Antonio Leon

Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.


2015 ◽  
Vol 4 (2) ◽  
Author(s):  
Nurhayati Nurhayati

Wireless sensor networks users are increasing drastically in communication and technology. They consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. However, the smaller of a device the better it is. The development of device should be user friendly. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. In BCDCP, all sensors send data from CH (Cluster Head) and then to BS (Base Station).  BCDCP works well in small-scale network but in large scale network it is not appropriated since it uses much energy for long distance wireless communication. We propose a routing protocol  -  Triangular Clustering  Routing Protocol  (TCRP)  -  to prolong network life time through the balanced energy consumption.  RPTC selects cluster head of triangular shape. The sensor field is divided into energy level and in every level we choose one node as a gate node. This gate node collects data and sends it to the leader node. Finally the leader node sends the aggregated data to the BS. We show TCRP outperforms BCDCP with several experiments. Key words: Wireless Sensor Network, Routing Protocol, Clustering


Author(s):  
Meriem Boumassata ◽  
Mohamed Benmohammed

Wireless sensor networks (WSNs) are networks formed by a large number of electronic devices called sensor nodes, where each node is capable of measuring environmental or physical values and communicating data, through wireless links, to a base station. The main problem that WSNs routing protocols face, is that sensors are powered with low power batteries, which plays an important role in network lifetime. Low Energy Adaptive Clustering Hierarchy (LEACH) is a hierarchical cluster based routing protocol that was proposed as a solution for low power consumption in WSNs. One of LEACH protocol limitations is “Extra Transmissions”. This paper studies LEACH protocol, some of its various enhancements and finally proposes a new clustering and selecting cluster head scheme with the goal of optimizing the energy consumption in WSNs.


2021 ◽  
Vol 13 (5) ◽  
pp. 57-74
Author(s):  
Nguyen Duy Tan ◽  
Vu Khanh Quy ◽  
Pham Ngoc Hung ◽  
Le Van Vinh

One of the main challenges for researchers to build routing protocols is how to use energy efficiently to extend the lifespan of the whole wireless sensor networks (WSN) because sensor nodes have limited battery power resources. In this work, we propose a Sector Tree-Based clustering routing protocol (STB-EE) for Energy Efficiency to cope with this problem, where the entire network area is partitioned into dynamic sectors (clusters), which balance the number of alive nodes. The nodes in each sector only communicate with their nearest neighbour by constructing a minimum tree based on the Kruskal algorithm and using mixed distance from candidate node to base station (BS) and remaining energy of candidate nodes to determine which node will become the cluster head (CH) in each cluster? By calculating the duration of time in each round for suitability, STB-EE increases the number of data packets sent to the BS. Our simulation results show that the network lifespan using STB-EE can be improved by about 16% and 10% in comparison to power-efficient gathering in sensor information system (PEGASIS) and energy-efficient PEGASIS-based protocol (IEEPB), respectively.


2020 ◽  
Vol 39 (6) ◽  
pp. 8529-8542
Author(s):  
M. Martinaa ◽  
B. Santhi ◽  
A. Raghunathan

Wireless Sensor Networks (WSNs) is created, stemming from their applications in distinct areas. Huge sensor nodes are deployed in geographically isolated regions in WSN. As a result of uninterrupted transmission, the energy level of the nodes gets rapidly depleted. Sensor node batteries cannot be replaced or recharged often and maintaining the energy level is a crucial issue. Thus energy efficiency is the significant factor to be consider in WSN. This paper focuses to implement an efficient clustering and routing protocols for maximized network lifetime. Clustering has been confirmed as a successful approach in network organization. The fundamental responsibilities of the clustering mechanism include improved energy efficiency and extended network lifespan. In this work, energy efficiency is improved to maximize lifespan of the WSN by proposing a novel method known as the Populated Cluster aware Routing Protocol (PCRP). The proposed method comprises three different steps: cluster formation, cluster head selection, and multi-hop data transmission. All sensor nodes are joined to a Cluster Head in a single hop in the cluster formation phase. Node distance is calculated and from which cluster head is selected. Then, cluster head aggregates the data from sensor nodes and transfer to the Base Station (BS). The shortest pathway is estimated by the Energy Route Request Adhoc On-demand Distance Vector (ERRAODV) algorithm. The proposed method considers the residual energy involved to attain high energy efficiency and network stability. The experimental analysis is demonstrated to validate the proposed method with existing, which improves the network lifespan. Vital parameters are validated using Network Simulator (NS2).


Author(s):  
Pratiksha Mishra ◽  
Satish Kumar Alaria ◽  
Prakash Dangi

A WSN consists of a setup of sensor nodes/motes which perceives the environment under monitoring, and transfer this information through wireless links to the Base Station (BS) or sink. The sensor nodes can be heterogeneous or homogeneous and can be mobile or stationary. The data gathered is forwarded through single/multiple hops to the BS/sink. In this paper, propose improvements to LEACH routing protocol to reduce energy consumption and extend network life. LEACH Distance Energy (LEACH-DE) not only selects the cluster head node by considering that the remaining energy of the node is greater than the average remaining energy level of the nodes in the network, but also selects the cluster head node parameters based on the geometric distance between the candidate node and the BS. The simulation results show that the algorithm proposed in this work is superior to LEACH and LEACH-C (Centralized) in terms of energy saving and extending the lifetime of wireless sensor networks.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1021
Author(s):  
Zhanserik Nurlan ◽  
Tamara Zhukabayeva ◽  
Mohamed Othman

Wireless sensor networks (WSN) are networks of thousands of nodes installed in a defined physical environment to sense and monitor its state condition. The viability of such a network is directly dependent and limited by the power of batteries supplying the nodes of these networks, which represents a disadvantage of such a network. To improve and extend the life of WSNs, scientists around the world regularly develop various routing protocols that minimize and optimize the energy consumption of sensor network nodes. This article, introduces a new heterogeneous-aware routing protocol well known as Extended Z-SEP Routing Protocol with Hierarchical Clustering Approach for Wireless Heterogeneous Sensor Network or EZ-SEP, where the connection of nodes to a base station (BS) is done via a hybrid method, i.e., a certain amount of nodes communicate with the base station directly, while the remaining ones form a cluster to transfer data. Parameters of the field are unknown, and the field is partitioned into zones depending on the node energy. We reviewed the Z-SEP protocol concerning the election of the cluster head (CH) and its communication with BS and presented a novel extended mechanism for the selection of the CH based on remaining residual energy. In addition, EZ-SEP is weighted up using various estimation schemes such as base station repositioning, altering the field density, and variable nodes energy for comparison with the previous parent algorithm. EZ-SEP was executed and compared to routing protocols such as Z-SEP, SEP, and LEACH. The proposed algorithm performed using the MATLAB R2016b simulator. Simulation results show that our proposed extended version performs better than Z-SEP in the stability period due to an increase in the number of active nodes by 48%, in efficiency of network by the high packet delivery coefficient by 16% and optimizes the average power consumption compared to by 34.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Sign in / Sign up

Export Citation Format

Share Document