Experimental Study on Dynamic Characteristics of Tailings

2014 ◽  
Vol 580-583 ◽  
pp. 455-459
Author(s):  
Jian Bin Zhao ◽  
Ying Chun Ji ◽  
Xiao Liu ◽  
Di Li

In this paper, the dynamic characteristics for three different kinds of copper tailings are studied through a series of cyclic triaxial tests. It is found that under confining pressure 200 and 300 kPa, elastic modulus raises with the increasement of coarse grain content to a certain degree and then declines, and the maximum elastic modulus corresponds to good gradation. While, as for confining pressure 100 kPa, elastic modulus raises with the increasement of fine grain content. It is also found that elastic modulus raises with the increasement of confning pressure. And, damping ratio raises with the increasement of shear strain and finally to a stable value. Finally, the fitting Gd/Gdmax~ curve for three kinds of tailings shows the reasonableness of test results.

2013 ◽  
Vol 07 (04) ◽  
pp. 1350031 ◽  
Author(s):  
BO LI ◽  
YUANQIANG CAI ◽  
XIANGWU ZENG ◽  
LINYOU PAN

The dynamic behavior of lightly cemented sand under long-term seawater attack was evaluated in this study. Resonant column and cyclic triaxial tests were employed to investigate the evolution of the shear modulus and damping ratio of cemented sand with respect to soaking period (SP), confining pressure, and cement content (CC). The results of this study show that the cementation of the sand is affected by soaking in seawater to a greater extent than by soaking in tap water. The shear modulus of the cemented sand soaked in seawater was smaller than that of the cemented sand soaked in tap water. The damping ratio increased significantly, as the SP increased and was greater for the cemented sand soaked in seawater than for the cemented sand soaked in tap water. The dynamic behavior of nonhomogenous specimens was examined. Crystallization of salts could be clearly observed and probably explains the evolution of the dynamic behavior of the cemented sand. Finally, the shear modulus was fitted using Rollins' Law [Rollins et al., 1998], which demonstrates that the parameters used in the equation can be reasonably fitted linearly over a range of SPs.


2019 ◽  
Vol 23 (1) ◽  
pp. 87-91
Author(s):  
Kai Cui ◽  
Hang Sheng

The effects of the consolidation ratio, effective confining pressure, gravel content, and granule breakage on the shear modulus and damping ratio of gravel have been extensively researched in recent years. However, studies on the effect of the granular shape are rare. Thus, under different confining pressures, dynamic triaxial tests were performed on gravel specimens to investigate the effect of granular shape on the shear modulus and damping ratio of gravel specimens by using a multifunctional triaxial testing instrument. The samples consisted of two kinds of gravel with the same grain composition and relative density of 45%. The test results indicate that, when the confining pressure and shear strain amplitude exceed 300 kPa and 7×10-4, respectively, gravel with a round granular shape has a higher shear modulus compared to an angular shape. Conversely, when the shear strain amplitude exceeds 2×10-4, the damping ratio of angular gravel exceeds that of round granules.


2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2014 ◽  
Vol 513-517 ◽  
pp. 269-272
Author(s):  
Yeong Mog Park ◽  
Ik Joo Um ◽  
Norihiko Miura ◽  
Seung Cheol Baek

The purpose of this study is to investigate the undrain shear strength increment during consolidation process of soft clayey soils. Thirty kinds of laboratory triaxial tests have been performed using undisturbed and remolded Ariake clay samples with different degree of consolidation and 5 kinds of confining pressure. Test results show that well known linear equation proposed by Yamanouchi et al.(1982) is overestimated the strength of undisturbed soft clay ground in the process of consolidation. A new simple and reasonable exponential equation proposed in this paper.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xi Chen ◽  
Wei Wang ◽  
Yajun Cao ◽  
Qizhi Zhu ◽  
Weiya Xu ◽  
...  

The study on hydromechanical coupling properties of rocks is of great importance for rock engineering. It is closely related to the stability analysis of structures in rocks under seepage condition. In this study, a series of conventional triaxial tests under drained condition and hydrostatic compression tests under drained or undrained condition on sandstones were conducted. Moreover, complex cyclic loading and unloading tests were also carried out. Based on the experimental results, the following conclusions were obtained. For conventional triaxial tests, the elastic modulus, peak strength, crack initiation stress, and expansion stress increase with increased confining pressure. Pore pressure weakened the effect of the confining pressure under drained condition, which led to a decline in rock mechanical properties. It appeared that cohesion was more sensitive to pore pressure than to the internal friction angle. For complex loading and unloading cyclic tests, in deviatoric stress loading and unloading cycles, elastic modulus increased obviously in first loading stage and increased slowly in next stages. In confining pressure loading and unloading cycles, the Biot coefficient decreased first and then increased, which indicates that damage has a great impact on the Biot coefficient.


2011 ◽  
Vol 243-249 ◽  
pp. 2050-2054 ◽  
Author(s):  
Pei Hsun Tsai ◽  
Sheng Huoo Ni

In this paper the dynamic property (shear modulus and damping ratio) of cement-stabilized soil is studied with using the resonant column test. The amount of cement admixed, the magnitude of confining pressure, and shearing strain amplitude are the parameters considered. Test results show that the maximum shear modulus of cement-stabilized soil increases with increasing confining pressure, the minimum damping ratio decreases with increasing confining pressure. The shear modulus of cement-stabilized soil decreases with increasing shearing strain while the damping ratio increases with increasing shearing strain. In the paper the relationship of shear modulus versus shearing strain is fitted into the Ramberg-Osgood equations using regression analysis.


2013 ◽  
Vol 838-841 ◽  
pp. 1302-1308 ◽  
Author(s):  
Jia Ding Wang ◽  
Shu Jun Peng ◽  
Wan Li Xie

In this paper based on the foundation construction of Datong Xian high-speed railway, a large number of test samples have been taken. The order and contribution rate of every experiment factor like cement commingle ratio, depths, water dipping conditions, compacting factor and vibration frequency on the dynamic characteristics of cement-improved loess such as dynamic elastic modulus, dynamic deformation, damping ratio by dynamic triaxial test, which orthogonal test method has been applied to. The dynamic load was calculated according to the train vibration attenuation rule of different depth. The dynamic characteristics of cement-improved loess such as dynamic deformation, dynamic elastic modulus, damping ratio were got form the dynamic tests of long time and large number of cycles. The results showed that with the increase of cement ratio, the dynamic characteristics of cement-improved loess are more better, there is no optimal ratio of cement.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xutao Zhang ◽  
Mingyang Ren ◽  
Zhaobo Meng ◽  
Baoliang Zhang ◽  
Jinglong Li

Rock material is a kind of mineral assemblage with complex structural heterogeneity, whose mechanical behavior is strongly affected by water or moisture content. In this work, we carried out a series of laboratory tests to investigate the mechanical response (e.g., deformation, strength, and failure characteristics) of Yunnan limestone in natural and saturated states. Our test results show that (1) after saturation, the stiffness and strength of Yunnan limestone degenerate considerably. Compared with the natural condition, the elastic modulus, deformation modulus, and tensile modulus decrease by about 30% on average, and uniaxial compressive strength and tensile strength also decrease by about 15% and 20%, respectively. While Poisson’s ratio is less affected by water content, it can be regarded as a constant; (2) the elastic modulus and deformation modulus of Yunnan limestone are significantly affected by confining pressure, and the relationship between them and confining pressure satisfies the law of hyperbolic function; (3) the peak strength envelope of Yunnan limestone has significant nonlinear characteristics, which can be well described by generalized Hoek-Brown strength criterion. However, the generalized Hoek-Brown criterion does not apply to the residual strength, which shows a linearly increasing trend with the increasing confining pressure; (4) the failure modes of Yunnan limestone are significantly dependent on confining pressure but insensitive to water content. With the increasing confining pressure, the failure modes of Yunnan limestone transform from splitting failure, tension-shear mixed failure, single inclined plane shear failure to Y-shaped or X-shaped conjugated shear failure. The test results can provide important experimental data for the establishment of the constitutive model of Yunnan limestone, which will contribute to obtain more reliable results for stability assessment of Xianglu Mountain Tunnel.


1988 ◽  
Vol 25 (2) ◽  
pp. 401-407
Author(s):  
Guy Lefebvre ◽  
Serge Malenfant

The liquefaction potential of a loose glacial till is assessed by laboratory cyclic tests and by comparison with test results obtained on a clean sand, using the same testing procedures. The laboratory testing program of both soils included cyclic triaxial tests on saturated specimens and constant volume cyclic simple shear tests on dry specimens. The till and the sand exhibited very similar behaviour during cycling and mobilized nearly identical cyclic shear strengths in the triaxial as well as in the simple shear tests. The 28% fines content in the till did not make it more resistant to liquefaction than a clean sand. Key words: liquefaction, sand, silty sand, cyclic simple shear test, cyclic triaxial test.


2016 ◽  
Vol 38 (4) ◽  
pp. 3-13 ◽  
Author(s):  
Sidali Denine ◽  
Noureddine Della ◽  
Muhammed Rawaz Dlawar ◽  
Feia Sadok ◽  
Jean Canou ◽  
...  

Abstract This paper presents results of a series of undrained monotonic compression tests on loose sand reinforced with geotextile mainly to study the effect of confining stress on the mechanical behaviour of geotextile reinforced sand. The triaxial tests were performed on reconstituted specimens of dry natural sand prepared at loose relative density (Dr = 30%) with and without geotextile layers and consolidated to three levels of confining pressures 50, 100 and 200 kPa, where different numbers and different arrangements of reinforcement layers were placed at different heights of the specimens (0, 1 and 2 layers). The behaviour of test specimens was presented and discussed. Test results showed that geotextile inclusion improves the mechanical behaviour of sand, a significant increase in the shear strength and cohesion value is obtained by adding up layers of reinforcement. Also, the results indicate that the strength ratio is more pronounced for samples which were subjected to low value of confining pressure. The obtained results reveal that high value of confining pressure can restrict the sand shear dilatancy and the more effect of reinforcement efficiently.


Sign in / Sign up

Export Citation Format

Share Document