Energy-Efficient Technologies in the Construction of School in Hot Climates

2014 ◽  
Vol 587-589 ◽  
pp. 287-293 ◽  
Author(s):  
Anastasiia Sergeevna Fidrikova ◽  
Olga Sergeevna Grishina ◽  
Alexey Pavlovich Marichev ◽  
Xeniya Mikhailovna Rakova

Reduction of the costs in the operation of the building, due to energy-saving technologies, is a priority in the construction today. This article discusses some ways to reduce energy consumption of schools in hot climates such as the installation of solar collectors, using of triple-glazed windows and modern insulating materials. These methods of energy reduction are determined by the selected space-planning solutions, constructive features of the structure, financial possibilities and climatic conditions. Considering these above listed characteristics, the school was designed for the class A of energy efficiency.[1-4]

Author(s):  
Byung Chang Kwag ◽  
Moncef Krarti

A basic principle of well designed greenhouse design emphasizes the utilization of solar energy as much as possible to grow the plants indoors during extreme outdoor climate conditions. Greenhouses can use significant amount of energy due to several factors including poor envelope design, inappropriate maintenance practices, and heavy reliance on fuel-based heating systems. In order to reduce energy consumption in the agricultural industry of Colorado, it is important to design energy efficient greenhouses under Colorado climatic conditions.


Author(s):  
M.V. Rubtsova ◽  
◽  
Е.Е. Semenova

The influence of building plan configurations in relation to their spatial characteristics on their energy consumption is considered. The article substantiates the relevance of the research of space-planning solutions of building forms, taking into account energy efficiency. As the object of research, the authors selected the most common three-dimensional configurations of building forms, taking into account energy efficiency. Examples of the analysis of the main space-planning parameters of the building and the prerequisites for their influence on its heat loss are considered with the provided graphic materials that allow you to find out the dependence of the change in the area of enclosing structures on the change in the floor area. This comparison is carried out in order to determine an energy-efficient and rationally arranged space-planning solution, taking into account the principles of energy saving for the construction of buildings.


2015 ◽  
Vol 8 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Yu Junyang ◽  
Hu Zhigang ◽  
Han Yuanyuan

Current consumption of cloud computing has attracted more and more attention of scholars. The research on Hadoop as a cloud platform and its energy consumption has also received considerable attention from scholars. This paper presents a method to measure the energy consumption of jobs that run on Hadoop, and this method is used to measure the effectiveness of the implementation of periodic tasks on the platform of Hadoop. Combining with the current mainstream of energy estimate formula to conduct further analysis, this paper has reached a conclusion as how to reduce energy consumption of Hadoop by adjusting the split size or using appropriate size of workers (servers). Finally, experiments show the effectiveness of these methods as being energy-saving strategies and verify the feasibility of the methods for the measurement of periodic tasks at the same time.


2021 ◽  
Vol 246 ◽  
pp. 08005
Author(s):  
A.S. Strongin ◽  
A.M. Zhivov

In geographical areas with cold climates, large, massively constructed industrial and warehouse buildings and logistics complexes are large consumers of energy resources. The great height and large contained volumes of the premises, the presence of a significant number of doors, and building configurations that include many transport corridors all require the use of air-thermal curtains to increase the energy efficiency of the buildings’ heating, ventilating, and air-conditioning (HVAC) systems, which commonly produce several thousand kilowatts of thermal power. Optimization of air curtains can improve the microclimates of the premises, achieve savings in the initial construction costs, and also reduce energy consumption during operation by 10–20%.


2013 ◽  
Vol 303-306 ◽  
pp. 1460-1464
Author(s):  
Jian Li Pan ◽  
Shan Zhi Chen ◽  
Raj Jain ◽  
Subharthi Paul

Building environments are significant sources of global energy consumption. To create energy efficient buildings, the first step is to sense and monitor all the energy-consuming appliances in the buildings and record all the energy consumption information. After that, appropriate energy saving policies can be decided and the instructions can be sent to the control devices to apply the energy saving adjustments. To do that, in-building two-way communication networks are needed to connect all the sensors to collect information as well as to send control instructions. However, most of the current devices are provided by separate manufacturers and with separate network infrastructures and so there is not much integration and interaction among different subsystems. In this paper, we envision a new energy sensing and monitoring framework with integrated communication backbone in the intelligent building environments. Specifically, through comprehensive comparisons and investigations, we study different candidate communicating media and protocols like wireline, wireless, and power-line communications technologies that potentially can be used in the intelligent buildings to realize the goals of coordination, integration, and energy efficiency. Also, we propose an extension "smart box" for integration of the devices before the maturity of the standardization process. Cloud computing and smart phone technologies are also introduced to realize the goals of improving energy efficiency and promote global sustainability.


2012 ◽  
Vol 462 ◽  
pp. 348-352
Author(s):  
Jung Mee Yun ◽  
Dae Hwan Kim

Recent studies have shown that the Internet-related energy consumption represents a significant, and increasing, part of the overall energy consumption of our society. Therefore, it is extremely important to look for energy-efficient Internet applications and protocols. For EPON, research on the development of protocols for higher energy efficiency at the PHY/MAC layers and the enactment of standards, and the improvement of energy efficiency of EPON devices is being conducted, while for networking equipment such as routers and switches and IDCs, research on saving the energy consumed by devices and the management of energy efficiency using power monitoring, cooling devices and metering technologies is being conducted. Against this backdrop, this study is aimed to develop methodology for the improvement of network energy efficiency in existing home/ small and medium-sized office network environments and to develop, test and evaluate an energy saving prototype for Convergence Adaptor


2018 ◽  
Vol 6 (4) ◽  
pp. 306-310 ◽  
Author(s):  
Ivan Binev

The report analyzes the results of the implemented measures to improve energy efficiency in Vasil Karagiozov High school of Yambol, Bulgaria. Energy savings are determined by measuring and/or calculating energy consumption with previously adopted baseline levels, implementing a measure or program to improve energy efficiency by providing normalized corrections corresponding to the impact of specific climatic conditions on energy use. A reference heating energy consumption of 38.62 kWh/m2 was determined after the renovation of the building. Comparing the reference energy costs for heating before and after the implementation of the energy saving measures show a real decrease of the energy consumption for heating by 53.44%. Compared to the reference energy consumption for heating before and after the energy saving measures show an actual reduction of energy consumption for heating by 47.86%.


Author(s):  
S. Alabadi ◽  
Predrag Rapajic ◽  
K. Arshad ◽  
Soheil Rostami

The number of Machine-to-Machine (M2M) devices has increased massively in the last few years and will continue to increase in the years to come. Spectrum utilisation efficiency and energy efficiency are the main challenges and design goals for M2M networks. Cognitive radio (CR) is a promising technology that can address these challenges. In this paper, the authors have proposed and developed an energy efficient mechanism to reduce energy consumption in Cognitive M2M (CM2M) networks. Their solution guarantees the throughput and reliability constraints for CM2M Devices (CM2MDs). The proposed mechanism can reduce energy consumption in CM2M networks by exploiting efficient sensing and accessing schemes for CM2MDs. The authors further develop sleep-mode/switching and accessing techniques to work efficiently with the proposed mechanism. The simulation results show that the proposed mechanism guarantees a desirable throughput and reduces overall energy consumption in the network.


2018 ◽  
Vol 11 (1) ◽  
pp. 179 ◽  
Author(s):  
Zhongwei Zhang ◽  
Lihui Wu ◽  
Tao Peng ◽  
Shun Jia

Nowadays, manufacturing industry is under increasing pressure to save energy and reduce emissions, and thereby enhancing the energy efficiency of the machining system (MS) through operational methods on the system-level has attracted more attention. Energy-efficient scheduling (ES) has proved to be a typical measure suitable for all shop types, and an energy-efficient mechanism that a machine can be switched off and back on if it waits for a new job for a relatively long period is another proven effective energy-saving measure. Furthermore, their combination has been fully investigated in a single machine, flow shop and job shop, and the improvement in energy efficiency is significant compared with only applying ES for MS. However, whether such two energy-saving measures can be integrated in a flexible job shop environment is a gap in the existing study. To address this, a scheduling method applying an energy-efficient mechanism is proposed for a flexible job shop environment and the corresponding mathematical model, namely the energy-efficient flexible job shop scheduling (EFJSS) model, considering total production energy consumption (EC) and makespan is formulated. Besides, transportation as well as its impact on EC is taken into account in this model for practical application. Furthermore, a solution approach based on the non-dominated sorting genetic algorithm-II (NSGA-II) is adopted, which can avoid the interference of subjective factors and help select a suitable machine for each operation and undertake rational operation sequencing simultaneously. Moreover, experimental results confirm the validity of the improved energy-efficient scheduling approach in a flexible job shop environment and the effectiveness of the solution.


2013 ◽  
Vol 700 ◽  
pp. 89-92
Author(s):  
Juan Li ◽  
Ying Pan

Early in the 20th century 70's, the concept of energy-saving building was officially proposed. The core of energy-saving buildings is to reduce energy consumption and enhance energy efficiency in buildings. However, with the continued rapid growth of China's economic and urbanization high-rise buildings have become the mainstream of the building industry. So, the research on energy-saving design in high-rise buildings in advanced structure becomes the hot issue of general interest. Many advanced structures and building materials have constantly developed, and have been used in high-rise buildings energy efficiency design. This paper summarizes and prospects the current situation of energy-saving design in chinas high-rise building, and also provides a reference for hoping the energy-saving design can be geared to international standards better.


Sign in / Sign up

Export Citation Format

Share Document