Cracking and Delamination Behavior of Gold Thin Strip Deposited on Polycarbonate Plate under Cyclic and Stepwisely-Increased Trapezoidal Tension

2014 ◽  
Vol 595 ◽  
pp. 36-44 ◽  
Author(s):  
Ya Fei Hu ◽  
Naoya Tada ◽  
Ichiro Shimizu

Cracking and delamination behavior of small rounded-rectangular gold thin films called “strips” with a thickness less than one micrometer was observed under cyclic and stepwisely-increased trapezoidal tensions. Three strips in different directions were deposited on a polycarbonate plate specimen which was subjected to tensile loading. Straight slit and Vickers indentation were introduced as initial defects on each strip and cracking and delamination which were initiated around the defects were observed. In strips with slit, delamination was observed when introducing the slit. It was suggested that the delamination was caused by the residual stress accumulated during deposition. The growth of delamination was also observed during cyclic tension. In strips with indentation, complex cracking and delamination behavior was observed depending on the strip direction, which seemed to be attributed to the interactive effect of residual stress by deposition and external mechanical loading.

2009 ◽  
Vol 113 (2) ◽  
pp. 976-983 ◽  
Author(s):  
Wonbong Jang ◽  
Jongchul Seo ◽  
Choonkeun Lee ◽  
Sang-Hyon Paek ◽  
Haksoo Han

2001 ◽  
Vol 687 ◽  
Author(s):  
George M Dougherty ◽  
Timothy Sands ◽  
Albert P. Pisano

AbstractPolycrystalline silicon thin films that are permeable to fluids, known as permeable polysilicon, have been reported by several researchers. Such films have great potential for the fabrication of difficult to make MEMS structures, but their use has been hampered by poor process repeatability and a lack of physical understanding of the origin of film permeability and how to control it. We have completed a methodical study of the relationship between process, microstructure, and properties for permeable polysilicon thin films. As a result, we have determined that the film permeability is caused by the presence of nanoscale pores, ranging from 10-50 nm in size, that form spontaneously during LPCVD deposition within a narrow process window. The unusual microstructure within this process window corresponds to the transition between a semicrystalline growth regime, exhibiting tensile residual stress, and a columnar growth regime exhibiting compressive residual stress. A simple kinetic model is proposed to explain the unusual morphology within this transition regime. It is determined that measurements of the film residual stress can be used to tune the deposition parameters to repeatably produce permeable films for applications. The result is a convenient, single-step process that enables the elegant fabrication of many previously challenging structures.


1983 ◽  
Vol 50 (4a) ◽  
pp. 789-794 ◽  
Author(s):  
K. C. Valanis ◽  
J. Fan

In this paper we present an analytical cum-numerical scheme, based on endochronic plasticity and the finite element formalism. The scheme is used to calculate the stress and elastoplastic strain fields in a plate loaded cyclically in its own plane along its outer edges and bearing two symmetrically disposed edge notches. One most important result that stands out is that while the external loading conditions are symmetric and periodic, the histories of stress and strain at the notch tip are neither symmetric nor periodic in character. In cyclic tension ratcheting phenomena at the tip of the notches prevail and a progressive change of the residual stress field at the notch line is shown to occur.


2009 ◽  
Vol 255 (19) ◽  
pp. 8252-8256 ◽  
Author(s):  
Thanh Nga Nguyen ◽  
Van Duy Nguyen ◽  
Sungwook Jung ◽  
Junsin Yi

1999 ◽  
Vol 594 ◽  
Author(s):  
T. Y. Zhang ◽  
Y. J. Su ◽  
C. F. Qian ◽  
M. H. Zhao ◽  
L. Q. Chen

AbstractThe present work proposes a novel microbridge testing method to simultaneously evaluate the Young's modulus, residual stress of thin films under small deformation. Theoretic analysis and finite element calculation are conducted on microbridge deformation to provide a closed formula of deflection versus load, considering both substrate deformation and residual stress in the film. Silicon nitride films fabricated by low pressure chemical vapor deposition on silicon substrates are tested to demonstrate the proposed method. The results show that the Young's modulus and residual stress for the annealed silicon nitride film are respectively 202 GPa and 334.9 MPa.


Author(s):  
Dai Cao Truong ◽  
Somporn Thaowonkaew ◽  
Pennapa Muthitamongkol ◽  
Mati Horprathum ◽  
Manish Kumar ◽  
...  

2019 ◽  
Vol 48 (6) ◽  
pp. 473-480 ◽  
Author(s):  
Umi Zalilah Mohamad Zaidi ◽  
A.R. Bushroa ◽  
Reza Rahbari Ghahnavyeh ◽  
Reza Mahmoodian

Purpose This paper aims to determine the crystallite size and microstrain values of AgSiN thin films using potential approach called approximation method. This method can be used as a replacement for other determination methods such as Williamson-Hall (W-H) plot and Warren-Averbach analysis. Design/methodology/approach The monolayer AgSiN thin films on Ti6Al4V alloy were fabricated using magnetron sputtering technique. To evaluate the crystallite size and microstrain values, the thin films were deposited under different bias voltage (−75, −150 and −200 V). X-ray diffraction (XRD) broadening profile along with approximation method were used to determine the crystallite size and microstrain values. The reliability of the method was proved by comparing it with scanning electron microscopy graph and W-H plot method. The second parameters’ microstrain obtained was used to project the residual stress present in the thin films. Further discussion on the thin films was done by relating the residual stress with the adhesion strength and the thickness of the films. Findings XRD-approximation method results revealed that the crystallite size values obtained from the method were in a good agreement when it is compared with Scherer formula and W-H method. Meanwhile, the calculations for thin films corresponding residual stresses were correlated well with scratch adhesion critical loads with the lowest residual stress was noted for sample with lowest microstrain and has thickest thickness among the three samples. Practical implications The fabricated thin films were intended to be used in antibacterial applications. Originality/value Up to the knowledge from literature review, there are no reports on depositing AgSiN on Ti6Al4V alloy via magnetron sputtering to elucidate the crystallite size and microstrain properties using the approximation method.


1993 ◽  
Vol 32 (Part 1, No. 1A) ◽  
pp. 155-161 ◽  
Author(s):  
Hong-Jueng King ◽  
Bor-Ming Lee ◽  
Ching-An Shao ◽  
Chien Chou ◽  
Fu-Pen CHiang
Keyword(s):  

2011 ◽  
Vol 1299 ◽  
Author(s):  
Ping Du ◽  
I-Kuan Lin ◽  
Yunfei Yan ◽  
Xin Zhang

ABSTRACTSilicon carbide (SiC) has received increasing attention on the integration of microelectro-mechanical system (MEMS) due to its excellent mechanical and chemical stability at elevated temperatures. However, the deposition process of SiC thin films tends to induce relative large residual stress. In this work, the relative low stress material silicon oxide was added into SiC by RF magnetron co-sputtering to form silicon oxycarbide (SiOC) composite films. The composition of the films was characterized by Energy dispersive X-ray (EDX) analysis. The Young’s modulus and hardness of the films were measured by nanoindentation technique. The influence of oxygen/carbon ratio and rapid thermal annealing (RTA) temperature on the residual stress of the composite films was investigated by film-substrate curvature measurement using the Stoney’s equation. By choosing the appropriate composition and post processing, a film with relative low residual stress could be obtained.


2017 ◽  
Vol 43 (15) ◽  
pp. 11992-11997 ◽  
Author(s):  
Yeting Xi ◽  
Kewei Gao ◽  
Xiaolu Pang ◽  
Huisheng Yang ◽  
Xiaotao Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document