Thermo-Structural Coupling Numerical Analysis of Rectangular Vessel

2014 ◽  
Vol 620 ◽  
pp. 14-17
Author(s):  
Chun Lai Tian ◽  
Shan Zhou ◽  
Li Yong Han

A rectangular vessel has two contact surfaces with different materials, iron and copper. In order to investigate thermo-structural characteristics of the vessel, the structural model is developed. The structural analysis is coupled with the thermal condition. The numerical simulation model with hex eight-node thermally coupled brick elements is established and solved by finite element method. The results show that the maximum stress with 112.5 MPa is distributed on the contact surface between the different materials. Because of the different materials’ expansions, there is stress concentration on the contact surface. The maximum displacement is 0.27 mm, almost the same at different pressure loads. The maximum stress increased to about 300 MPa as the temperature increase. The structural response caused by thermal expansion is important for the vessel design.

Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 365
Author(s):  
Tiesuo Geng ◽  
Shuanghua Chen ◽  
Liuqun Zhao ◽  
Zhe Zhang

In view of the first domestic offshore suspension bridge with caisson foundation, this paper mainly studies the bonding properties between underwater pre-filled aggregate grouting bed and anchorage caisson foundation. Through the test, the cohesive force of adding ordinary concrete between the anchorage caisson foundation and the grouting bed, the cohesive force of adding paper base asphalt felt between the anchorage caisson foundation and the grouting bed, and the cohesive force of adding geotextile between the anchorage caisson foundation and the grouting bed are measured, respectively. When the contact surface is concrete and geotextile, the fracture form of the specimen was analyzed by numerical simulation, and the AE variation trend of the two specimens have been studied. The results of this article can provide references for other projects.


2012 ◽  
Vol 433-440 ◽  
pp. 1324-1332
Author(s):  
Xian He Du ◽  
Xin Pu Shen

The purpose of this paper is to observe the distribution of displacement and stress of LNG prestressed tank when under the normal condition and the LNG divulging. The Abaqus software has been used to analyze the three dimensional LNG prestressed tank with finite element method, a numerical simulation is carried out by modeling the prestressed rebar with three dimensional elements, meanwhile, the prestress is applied for rebar with the falling temperature method. By coupling the condition of dead load, live load, prestress, gas pressure, hydraulic pressure and the low temperature, the conclusions indicate that: 1) the valid prestress has been applied by the prestressed rebar for LNG tank model. 2) the effect of live load for the tank can be ignored but the effect of gas pressure cannot. 3) the effect of highly temperature difference between the internal and external of LNG tank is great when the template lining of LNG tank divulging. The maximum displacement of cylinders shell is 28.22mm, and the maximum stress is 13.97MPa, the safety can be enhanced by modifying the arrangement of prestressed rebar.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Roman Sherrod ◽  
Eric C. O’Quinn ◽  
Igor M. Gussev ◽  
Cale Overstreet ◽  
Joerg Neuefeind ◽  
...  

AbstractThe structural response of Dy2TiO5 oxide under swift heavy ion irradiation (2.2 GeV Au ions) was studied over a range of structural length scales utilizing neutron total scattering experiments. Refinement of diffraction data confirms that the long-range orthorhombic structure is susceptible to ion beam-induced amorphization with limited crystalline fraction remaining after irradiation to 8 × 1012 ions/cm2. In contrast, the local atomic arrangement, examined through pair distribution function analysis, shows only subtle changes after irradiation and is still described best by the original orthorhombic structural model. A comparison to Dy2Ti2O7 pyrochlore oxide under the same irradiation conditions reveals a different behavior: while the dysprosium titanate pyrochlore is more radiation resistant over the long-range with smaller degree of amorphization as compared to Dy2TiO5, the former involves more local atomic rearrangements, best described by a pyrochlore-to-weberite-type transformation. These results highlight the importance of short-range and medium-range order analysis for a comprehensive description of radiation behavior.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
M. S. H. Bhuiyan ◽  
I. A. Choudhury ◽  
M. Dahari ◽  
Y. Nukman ◽  
S. Z. Dawal

A gear-based knee joint is designed to improve the performance of mechanical-type above-knee prostheses. The gear set with the help of some bracing, and bracket arrangement, is used to enable the prosthesis to follow the residual limb movement. The motion analysis and finite-element analysis (FEA) of knee joint components are carried out to assess the feasibility of the design. The maximum stress of 29.74 MPa and maximum strain of 2.393e−004 are obtained in the gear, whereas the maximum displacement of 7.975 mm occurred in the stopper of the knee arrangement. The factor of safety of 3.5 obtained from the FE analysis indicated no possibility of design failure. The results obtained from the FE analysis are then compared with the real data obtained from the literature for a similar subject. The pattern of motion analysis results has shown a great resemblance with the gait cycle of a healthy biological limb.


2014 ◽  
Vol 538 ◽  
pp. 91-94
Author(s):  
Wei Ping Luo

A virtual prototype model of Machine Tool has been constructed by using the Pro/E software and the ANSYS software. Considering the effects of contact surfaces, dynamic analyses of Machine Tool are studied. The effects of contact surfaces on the dynamic characteristics of machine tool are studied. So that the purpose predicting and evaluating synthetically the machine tool dynamic performance without a physical sample can be achieved.


Author(s):  
Aleksei S. Tikhonov ◽  
Andrey A. Shvyrev ◽  
Nikolay Yu. Samokhvalov

One of the key factors ensuring gas turbine engines (GTE) competitiveness is improvement of life, reliability and fuel efficiency. However fuel efficiency improvement and the required increase of turbine inlet gas temperature (T*g) can result in gas turbine engine life reduction because of hot path components structural properties deterioration. Considering circumferential nonuniformity, local gas temperature T*g can reach 2500 K. Under these conditions the largest attention at designing is paid to reliable cooling of turbine vanes and blades. At present in design practice and scientific publications comparatively little attention is paid to detailed study of turbine split rings thermal condition. At the same time the experience of modern GTE operation shows high possibility of defects occurrence in turbine 1st stage split ring. This work objective is to perform conjugate numerical simulation (gas dynamics + heat transfer) of thermal condition for the turbine 1st stage split ring in a modern GTE. This research main task is to determine the split ring thermal condition by defining the conjugate gas dynamics and heat transfer result in ANSYS CFX 13.0 package. The research subject is the turbine 1st stage split ring. The split ring was simulated together with the cavity of cooling air supply from vanes through the case. Besides turbine 1st stage vanes and blades have been simulated. Patterns of total temperature (T*Max = 2000 °C) and pressure and turbulence level at vanes inlet (19.2 %) have been defined based on results of calculating the 1st stage vanes together with the combustor. The obtained results of numerical simulation are well coherent with various experimental studies (measurements of static pressure and temperature in supply cavity, metallography). Based on the obtained performance of the split ring cooling system and its thermal condition, the split ring design has been considerably modified (one supply cavity has been split into separate cavities, the number and arrangement of perforation holes have been changed etc.). All these made it possible to reduce considerably (by 40…50 °C) the split ring temperature comparing with the initial design. The design practice has been added with the methods which make it possible to define thermal condition of GTE turbine components by conjugating gas dynamics and heat transfer problems and this fact will allow to improve the designing level substantially and to consider the influence of different factors on aerodynamics and thermal state of turbine components in an integrated programming and computing suite.


2021 ◽  
Vol 15 (1) ◽  
pp. 584-612
Author(s):  
Weipeng Zhang ◽  
Chongge Chen ◽  
Zibin Wang ◽  
Yinghong Li ◽  
Hang Guo ◽  
...  

2007 ◽  
Vol 33 (7) ◽  
pp. 548-551
Author(s):  
D. A. Khokhlov ◽  
I. A. Khrebtov ◽  
S. V. Baryshev ◽  
A. V. Bobyl ◽  
A. A. Ivanov ◽  
...  

2010 ◽  
Vol 29-32 ◽  
pp. 1458-1463 ◽  
Author(s):  
Jin Yun Liu ◽  
Jian Yun Chen

Three basic types of similar relationship between the prototype and the model for dynamic structural model test and dynamic destructive model test were proposed in corresponding literatures. At the time the situation where various similar relationships are applicable and the technique to ensure similarity for the different goal was discussed. Here the numerical simulation of model test of water-conveyance tunnel concerning fluid-structure interaction in soft soil is studied. Based on economy and practicability of selective material for model test, the similar relationship and the technique are proposed, which are validated through the example. The results of numerical simulation show: under the specific conditions, data of the model test can completely transfer to those of the prototype by use of this type of similar skill, and get more useful information. Some new ideas are introduced to keep the similarity of the hydro-structure structures.


2011 ◽  
Vol 82 ◽  
pp. 434-439 ◽  
Author(s):  
Maurizio Acito ◽  
Flavio Stochino ◽  
Sergio Tattoni

The random nature of the explosion load, associated with the random nature of material properties, and geometric dimensional characteristics, implies the need to consider them into the reliability analysis in order to have a more correct estimation of the structural behavior. Therefore, when the randomness of these parameters in the analysis is considered, the response of the structure assumes probabilistic nature, and this makes it necessary to look into the reliability measure. This paper presents results from a parametric investigation of the reliability of reinforced concrete (RC) beam subjected to blast load. The probabilistic responses of the maximum displacement for a reinforced concrete flexural member under blast loadings are evaluated by means of nonlinear dynamic analysis with simplified equivalent single-degree-of-freedom (SDOF) system. Results of numerical simulations have shown the response of structures, in terms of maximum displacement in relation also to the blast load and the geometrical and mechanical characteristics of the beams. Monte Carlo simulation of dynamic response of the equivalent SDOF system is performed to estimate the reliability.


Sign in / Sign up

Export Citation Format

Share Document