Corrosion Behavior of WC-Co and WC-Ni in 3.5% NaCl at Increasing Temperature

2014 ◽  
Vol 660 ◽  
pp. 135-139 ◽  
Author(s):  
A. Ismail ◽  
Norhaslina Abd Aziz

Tungsten carbides (WC) are widely used as wear resistant components such as seal, valves, rings, nozzle and bearings. But in some processing operations, the environment necessarily includes severe corrosion or extremes of temperatures. In paper reveal, the corrosion performance of commercial cobalt tungsten carbide (WC-6%Co) and nickel tungsten carbide (WC-9%Ni) in seawater with 3.5% salinity. The experiment was performed in four different temperatures (20°C, 40°C, 60°C and 80°C) and the surface structure by corrosion attack was reveal under SEM. TheIcorrvalue of WC-9%Ni is lower than WC-6%Co, elucidate that WC-9%Ni is better in corrosion resistance compare to WC-6%Co. As the temperature increased, the corrosion rate for every material increased as expected. Decreasing in hardness value for both materials reveal that, the material’s hardness decrease after corrosion has attacked.

2018 ◽  
Vol 791 ◽  
pp. 88-94
Author(s):  
Azzura Ismail ◽  
Sim Liew Kar ◽  
Himi Ibrahim

The corrosion performance of tinplate (Sn) and aluminum (Al) can as beverage packaging was studied in different acidity of soft drinks available in market. The research objective is to evaluate the acidity of different beverage to corrosion attack. The performance of coating layer provides by manufacturer to enhance corrosion attack was studied as well as corrosion mechanism penetrate on these nonferrous alloy. Electrochemical analysis was used to identify breakdown potential and corrosion damage was analyzed using SEM and energy dispersive spectrometry. Overall, the corrosion rates of stannum are much higher than aluminum for both new and used packaging. From Tafel results, the most corrosion resistant performed by soft drink 1 with pH 2.45 in aluminum packaging followed by manufactured aluminum. Corrosion resistance reduced in tinplate followed by manufactured tinplate. The most corrosion resistance condition was found on the aluminum sheet without manufacturing process that immersed in soft drink A according to its lowest corrosion rate 0.0703mm/yr, followed by manufactured aluminum sheet immersed in soft drink A with second lowest corrosion rate 0.0711mm/yr. All cyclic curves in this test showed that there was no pitting occurred on specimens as the reverse anodic curve was shifted to lower currents and negative hysteresis was produced. From SEM analysis, aluminum was oxidized and oxide film formed on surface to protect the material whereas the tinplate can was corroded and holes produced after electrochemical test. In both corrosion rate measurement and microscope analysis, it was clearly proved that aluminum can had more anti-corrosion properties than tinplate can. There was showed that some leading effect due to can manufacturing to an increasing corrosion rate to the metal beverage cans.


2012 ◽  
Vol 510-511 ◽  
pp. 481-486
Author(s):  
A.I.O. Zaid ◽  
G.T.A. Allawi ◽  
A. Al-Haj-Ali

The paper presents the effect of vanadium addition to aluminum and aluminum grain refined by titanium on the micron level, in the range from 0.005 wt % to 0.236 wt %, on their corrosion resistance in acidic solution, HCl, at three different temperatures namely: 25 °C, 40 °C and 60 °C. It was found that the corrosion rate was slightly increased by the addition of any percentage of vanadium at 25 °C. Furthermore, it was found that the corrosion rate increased with the increase of temperature at any percentage of vanadium addition in the case of both aluminum and aluminum grain refined by titanium. However it was found that addition of vanadium at any percentage to either aluminum or aluminum+ titanium, resulted in decrease of the corrosion rate i.e. improvement in their corrosion resistance in acidic solution at 40 °C and 60 °C. The maximum achieved reduction in corrosion rate was 77 % at 40 °C and 0.148 wt % vanadium addition.


2012 ◽  
Vol 580 ◽  
pp. 560-563
Author(s):  
Guang Hui Chen

As-cast AM60 magnesium alloy was solid dissolved under a high-pressure of 4 Gpa at different temperatures. The microstructure of the products was observed by optical microscope and the corrosion resistance of the products was investigated. The results show that increasing temperature during solution treatment promotes the dissolution into α-Mg matrix of β-Mg17Al12 in the alloy and improves the corrosion resistance of AM60 alloy, especially for over 400 °C.


2013 ◽  
Vol 794 ◽  
pp. 575-582 ◽  
Author(s):  
S. Ningshen ◽  
M. Sakairi ◽  
K. Sukuki ◽  
S. Ukai

An oxide dispersion strengthened steels are one of the most promising high temperatures, and high performance advanced structural material being developed for future fast reactors and high-temperature Generation IV reactors. In the present work, the corrosion resistance and its correlation with the passive film compositions of 11% Cr F/M and 9-15% Cr (with Zr or Hf) ODS steels is examined and compared with AISI type 304L stainless steel in boiling 60 - 62% (~13 M) HNO3. The corrosion rate measured in 62% HNO3 for 240 h of 11% Cr F/M, 9% Cr and 15% Cr (Zr) ODS steels show high corrosion rate. On the other hand, low corrosion rate was observed in 304L stainless steel (0. 21 to 23 mm y-1). However, severe intergranular corrosion attack was revealed in type 304L SS after 240 h exposure, but none in ODS steels. Such an intergranular corrosion attack seen in type 304L stainless steel is undesirable. On the contrary, low corrosion rate (0.04 0.15 mm y-1) of 15% Cr (Hf) ODS steel in 3 M, 6 M and 9 M HNO3, comparable to that of type 304L stainless steel was observed. The improved corrosion resistance of 15% Cr (Hf) ODS steel was attributed to enrich (20 at. %) and protective Al2O3 layer formation in addition to Cr2O3 in the passive film.


2016 ◽  
Vol 849 ◽  
pp. 196-202
Author(s):  
Yang Fei ◽  
Xiao Bo Zhang ◽  
Zhi Xin Ba ◽  
Zhang Zhong Wang

In order to study the effect of solution temperature on corrosion resistance of Mg alloy for biomedical applications, microstructure and corrosion behavior of Mg-2.25Nd-0.11Zn-0.43Zr (NZ20K) alloy solution treated at different temperatures were investigated by using a scanning electron microscope (SEM) equipped with an electron dispersive spectroscope (EDS), electrochemical and mass loss tests. The results show that the grains grow and precipitations decreases with increasing the solution temperature. The corrosion rate decreases firstly and then increases with increasing solution temperature, and the best corrosion resistance of the NZ20K alloy is obtained at the temperature of 540 °C.


2014 ◽  
Vol 556-562 ◽  
pp. 162-165 ◽  
Author(s):  
Shi Dong Zhu ◽  
Hai Xia Ma ◽  
Jin Ling Li ◽  
Zhi Gang Yang

Effects of elemental sulfur on corrosion behavior of super 13Cr martensitic stainless steel were investigated by utilizing weight loss test, and the micro morphologies and chemical elements of corrosion scales were characterized by using SEM and EDS. The results showed that corrosion resistance of super 13Cr stainless steel was aggravated by the hydrolytic action of sulfur, the corrosion rate of super 13Cr stainless steel increased with the increasing of sulfur content, and firstly increased and then decreased with the increasing of temperature due to the activated adsorption and existential state of sulfur at the different temperatures.


2013 ◽  
Vol 743-744 ◽  
pp. 607-612 ◽  
Author(s):  
Hong Liang Lin ◽  
Jian Qiu Wang ◽  
En Hou Han

The electrochemical behavior of cast X-52 with different Sn content ranging from 0 to 1 wt. % was investigated using the methods of potentiodynamic test, electrochemical impedance spectroscopy (EIS). The immersion tests involved to examine the relationship between Sn addition and corrosion performance of cast X-52. In addition, the morphology and the compositions of surface corrosion products were analyzed using scanning electron microscope (SEM)/ energy dispersive spectroscopy (EDS). Potentiodynamic polarization curves showed that the presence of Sn decreased the corrosion current density. EIS indicated that Sn-containing steels had higher polarization resistances. These results confirmed that Sn played a positive role in reducing corrosion rate in H2S-containing environment. However, the corrosion resistance decreased with increasing Sn addition. It was proved that Sn improved the corrosion resistance with only a small content and large amount of Sn might lead to an advance of the pit due to occurrence of more acidification. Moreover, a continuous inner O-rich layer adherent to the matrix was found for Sn-addition samples, which lead to a decrease of corrosion rate due to its compact characteristic, compared with porous sulfide formed on the outer surface.


1983 ◽  
Vol 26 ◽  
Author(s):  
V. Mirschinka ◽  
R. Odoj

ABSTRACTSix metal alloys were subjected to surface and creeprupture stress corrosion tests using NaCl- and Q-brines. Low-allou materials do not seem to be suitable as a barrier against salt brine attack due to the high surface corrosion rate. Creep-rupture strength corrosion was insignificant for the tested materials. Hastelloy C 4 showed no corrosion attack by salt brines in autoclaves at 200°C and 100 bar during 8 months of testing. Bentonite was shown to reduce the corrosion attack considerably.


2011 ◽  
Vol 291-294 ◽  
pp. 215-218 ◽  
Author(s):  
Gui Rong Yang ◽  
Wen Ming Song ◽  
Xian Ming Sun ◽  
Ying Ma ◽  
Yuan Hao

The Ni-P/SiC composite coating was prepared by chemical deposition technique. The corrosion behavior of electroless Ni-P/SiC composite coating was investigated. The results show that the corrosion resistance of electroless composite coating decreased with the increasing SiC concentration in bath solution. There were some little pores among the composite coating and the pores would increased with the increasing SiC content among the coating, which made the corrosion resistance decreased. The corrosion rate increased with the increasing temperature of corrosion liquid. The corrosion resistance was improved for T gradient electroless Ni-P/SiC composite coating comparing with the single electroless composite coating whether the corrosion solution was acid solution or alkaline solution. The corrosion rate were less than 5 mg/cm2for all specimens in alkaline solution, which indicated that the corrosion resistance of electroless composite coating was better than that in acid solution.


Sign in / Sign up

Export Citation Format

Share Document