Effect of Sn Addition on the Corrosion Performance of Cast X-52 in H2S-Containing Environment at 60°C

2013 ◽  
Vol 743-744 ◽  
pp. 607-612 ◽  
Author(s):  
Hong Liang Lin ◽  
Jian Qiu Wang ◽  
En Hou Han

The electrochemical behavior of cast X-52 with different Sn content ranging from 0 to 1 wt. % was investigated using the methods of potentiodynamic test, electrochemical impedance spectroscopy (EIS). The immersion tests involved to examine the relationship between Sn addition and corrosion performance of cast X-52. In addition, the morphology and the compositions of surface corrosion products were analyzed using scanning electron microscope (SEM)/ energy dispersive spectroscopy (EDS). Potentiodynamic polarization curves showed that the presence of Sn decreased the corrosion current density. EIS indicated that Sn-containing steels had higher polarization resistances. These results confirmed that Sn played a positive role in reducing corrosion rate in H2S-containing environment. However, the corrosion resistance decreased with increasing Sn addition. It was proved that Sn improved the corrosion resistance with only a small content and large amount of Sn might lead to an advance of the pit due to occurrence of more acidification. Moreover, a continuous inner O-rich layer adherent to the matrix was found for Sn-addition samples, which lead to a decrease of corrosion rate due to its compact characteristic, compared with porous sulfide formed on the outer surface.

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 249
Author(s):  
El-Sayed M. Sherif ◽  
Magdy M. El Rayes ◽  
Hany S. Abdo

In the present work, a layer of 75%Cr3C2−25%NiCr with thickness of 260 ± 15 µm was coated onto the API-2H pipeline steel surface using high-velocity oxy-fuel deposition. The effect of 75%Cr3C2−25%NiCr coating on the corrosion of the API steel after 1 h, 24 h, and 48 h exposure in 4.0% sodium chloride solutions is reported. The corrosion tests were performed using potentiodynamic cyclic polarization, electrochemical impedance spectroscopy, and chronoamperometric current–time techniques along with scanning electron microscopy and energy-dispersive X-ray analyses. The curves of polarization indicated that the presence of the coating increases the corrosion resistance of the steel through decreasing its corrosion current and corrosion rate. Impedance data showed that all resistances recorded higher values for the coated API steel. Chronoamperometric current–time measurements confirmed that the coated API steel has lower absolute current values and thus lower corrosion rate. All results proved that the presence of 75%Cr3C2−25%NiCr coating enhances the corrosion resistance of the API steel via the formation of a protective layer of Cr and Ni oxides, which could lead to decreasing the corrosion rate.


2020 ◽  
Vol 20 (1) ◽  
pp. 30-40
Author(s):  
Arvin Taghizadeh Tabrizi ◽  
Maryam Pouzesh ◽  
Farhad Farhang Laleh ◽  
Hossein Aghajani

Abstract In order to enhance the surface properties of a magnesium-based substrate, WC-Co coating was applied on AZ91 alloy by electro spark deposition (ESD), successfully for the first time. The optimum parameters of the ESD process were achieved, based on the corrosion behavior and calculated corrosion rate of the coated samples when 5kHz and 25 A were chosen. For evaluation of the corrosion performance of the achieved WC-Co layers, polarization, and electrochemical impedance spectroscopy tests were carried out in the 3.5 wt % Na3PO4 solution at room temperature. Polarization results show that the corrosion rate (mpy) is in the optimum condition almost half of a bulk sample of uncoated AZ91. Field emission scanning electron microscopy (FE-SEM) was used to examine the surface morphology of applied coatings. These results show that at a lower current, the amount of deposited WC-Co was reduced. The maximum surface microhardness obtained was 193 HV0.2.


2006 ◽  
Vol 530-531 ◽  
pp. 111-116
Author(s):  
M.C.E. Bandeira ◽  
F.D. Prochnow ◽  
Isolda Costa ◽  
César V. Franco

Nd-Fe-B magnets present outstanding magnetic properties. However, due to their low corrosion resistance, their applications are limited to non-corrosive environments. Nowadays, significant efforts are underway to increase the corrosion resistance of these materials, through the use of coatings. Herein are presented the results of a study on the corrosion resistance of Nd-Fe-B magnets coated with polypyrrole (PPY). The electrochemical behavior of coated and uncoated magnets has been studied by Electrochemical Impedance spectroscopy (EIS) in synthetic saliva. The results were compared to previous investigations, which were carried out under similar conditions, in Na2SO4 and NaCl solutions. In sulphate solution, the corrosion resistance of the PPY-coated magnet was 3 times larger (1600 .cm2) than that of uncoated magnet (500 .cm2). In NaCl solution, however, the corrosion resistance of coated and uncoated magnets were very similar (250 .cm2). In synthetic saliva, both the uncoated and coated magnets presented good corrosion performance (1940 .cm2). Such behavior can be attributed to the phosphate ions in saliva, which play a role as corrosion inhibitor, producing phosphating, at least partially, of the magnet surface. The PPY-coated magnets presented a strong diffusional control from moderate to low frequencies, caused by the polypyrrole film. The thicker PPY film increased the corrosion resistance of the magnet in synthetic saliva.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
A. Torres-Islas ◽  
C. Carachure ◽  
S. Serna ◽  
B. Campillo ◽  
G. Rosas

The corrosion behavior of the Fe40Al60nanostructured intermetallic composition was studied using electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques with an innovative electrochemical cell arrangement. The Fe40Al60(% at) intermetallic composition was obtained by mechanical alloying using elemental powders of Fe (99.99%) and Al (99.99%). All electrochemical testing was carried out in Fe40Al60particles that were in water with different pH values. Temperature and test time were also varied. The experimental data was analyzed as an indicator of the monitoring of the particle corrosion current densityicorr. Different oxide types that were formed at surface particle were found. These oxides promote two types of surface corrosion mechanisms: (i) diffusion and (ii) charge transfer mechanisms, which are a function oficorrbehavior of the solution, pH, temperature, and test time. The intermetallic was characterized before and after each test by transmission electron microscopy. Furthermore, the results show that at the surface particles uniform corrosion takes place. These results confirm that it is possible to sense the nanoparticle corrosion behavior by EIS and LPR conventional electrochemical techniques.


MRS Advances ◽  
2019 ◽  
Vol 4 (63) ◽  
pp. 3475-3484
Author(s):  
Miguel A. Téllez-Villaseñor ◽  
Carlos A. León Patino ◽  
Ricardo Galván Martínez ◽  
Ena A. Aguilar Reyes

ABSTRACTThe work presents an electrochemical study of the corrosion behaviour of two TiC/Cu-Ni metal matrix composites with a content of 10 and 20 wt.% Ni immersed in synthetic seawater. The composites were synthesized by a capillary infiltration technique, obtaining dense materials TiC/Cu-10Ni and TiC/Cu-20 Ni with a residual porosity of 1.8 and 1.7%, respectively. The corrosion rate (CR) was evaluated from the techniques of polarization curves (PC), linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Electrochemical measurements were carried out under static conditions, ambient temperature and atmospheric pressure at 24 hours exposure in the electrolytic medium. The corrosion rate is affected by the Ni content in the matrix, with less corrosion in the composite with a higher Ni content. The higher content of Ni in the Cu-Ni alloy provides higher passivation and stability to the corrosion products film that are absorbed on the composite surface. Microscopic examination (SEM) showed a characteristic morphology of a corrosion mechanism of the localized type (pits and crevices) generated by a differential aeration, where the TiC/Cu-10Ni composite showed greater degradation.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 394 ◽  
Author(s):  
Getinet Asrat Mengesha ◽  
Jinn P. Chu ◽  
Bih-Show Lou ◽  
Jyh-Wei Lee

The plasma electrolyte oxidation (PEO) process has been considered an environmentally friendly surface engineering method for improving the corrosion resistance of light weight metals. In this work, the corrosion resistance of commercially pure Al and PEO treated Al substrates were studied. The PEO layers were grown on commercially pure aluminum substrates using two different alkaline electrolytes with different addition concentrations of Si3N4 nanoparticles (0, 0.5 and 1.5 gL−1) and different duty cycles (25%, 50%, and 80%) at a fixed frequency. The corrosion properties of PEO coatings were investigated by the potentiodynamic polarization and electrochemical impedance spectroscopy test in 3.5 wt.% NaCl solutions. It showed that the weight gains, layer thickness and surface roughness of the PEO grown oxide layer increased with increasing concentrations of Si3N4 nanoparticles. The layer thickness, surface roughness, pore size, and porosity of the PEO oxide layer decreased with decreasing duty cycle. The layer thickness and weight gain of PEO coating followed a linear relationship. The PEO layer grown using the Na2B4O7∙10H2O contained electrolyte showed an excellent corrosion resistance and low surface roughness than other PEO coatings with Si3N4 nanoparticle additives. It is noticed that the corrosion performance of PEO coatings were not improved by the addition of Si3N4 nanoparticle in the electrolytic solutions, possibly due to its detrimental effect to the formation of a dense microstructure.


2018 ◽  
Vol 934 ◽  
pp. 105-110 ◽  
Author(s):  
Ke Jian Li ◽  
Qiang Zheng ◽  
Yue Lin Qin ◽  
Xiao Wei Liu

Plastic deformation can induce surface modification, such as shot peening (SP) on workpiece surface is the hot issue of recent scientific research. SP is the efficient way to improve mechanical behavior of specimens by inducing sever plastic deformation on their surface. Nevertheless, this surface treatment induced complex microstructural evolutions such as grain refinement, will enhance the corrosion resistance of specimens. In this work, the microstructure and properties of 34CrMo4 alloy of before and after SP for 20 min have been investigated. The evolution of microstructure and properties were analyzed from the surface and cross-section. The microstructure morphology at the different depth was determined by optical microscope. The results show grain size is increasing with the depth, and the microhardness and compressive residual stress decrease gradually. In terms of corrosion resistance, the 50 μm depth specimen has the best property than other depth, which the potential and corrosion current density are-0.484 V and-5.72 Acm-2, respectively. The maximum polarization resistance is 2055 Ωcm2by capacitive arc radius of electrochemical impedance spectroscopy.


2019 ◽  
Vol 66 (6) ◽  
pp. 819-826
Author(s):  
Khashayar Tabi ◽  
Mansour Farzam ◽  
Davood Zaarei

Purpose Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. The purpose of this paper is to study the corrosion behavior of dacromet-coated steel. Design/methodology/approach Potassium silicate sealer was applied on solvent-cleaned, acid-pickled, dacromet-coated steel to improve its corrosion resistance. Electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and salt spray were carried out. SEM was used to study the morphological appearance of the surface. Findings The EIS behavior indicated that solvent-cleaned dacromet-coated steel sealed with potassium silicate showed that the corrosion current density was 2.664E − 5 A.cm2 which was reduced to 8.752E − 6 A.cm2 and the corrosion rate, which was 2.264E − 2 mm.year−1, was reduced to 7.438E − 3 mm.year−1 in NaCl 3.5 wt.per cent. EIS was used in NaCl 3.5 wt.%, and the Bode plot characteristics showed that the corrosion protection of solvent-cleaned, dacromet-coated steel was enhanced when sealed with potassium silicate. The EDS results of salt-sprayed, solvent-cleaned samples after 10 days indicated that the main corrosion products are composed of SiO2, ZnO and Al2O3. Research limitations/implications The detection of Li element in EDS was not possible because of the device limitation. Originality/value The current paper provides new information about the sealing properties of potassium silicate and its effects on the corrosion resistance of dacromet coating, which is widely used in many industries such as the automobile industry.


2019 ◽  
Vol 37 (5) ◽  
pp. 657-678
Author(s):  
Muazzam Ghous Sohail ◽  
Mohammad Salih ◽  
Nasser Al Nuaimi ◽  
Ramazan Kahraman

Purpose The purpose of this paper is to present the results of a two-year long study carried out in order to evaluate the corrosion performance of mild steel bare bars (BB) and epoxy-coated rebar (ECR) in concrete under a simulated harsh environment of chlorides. Design/methodology/approach The blocks are subjected to Southern Exposure testing. The electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) and Tafel plot are performed to measure the polarization resistance and corrosion current densities of these rebars. Knife-peel test was performed to assess the adhesion between epoxy and underlying steel after two years of exposure. Findings Mild steel BB showed a high corrosion current density of 1.24 µA/ cm2 in Tafel plots and a very low polarization resistance of 4.5 kΩ cm2 in LPR technique, whereas very high charge transfer resistance of 1672 and 1675 kΩ cm2 is observed on ECR and ECR with controlled damage (ECRCD), through EIS technique, respectively. EIS is observed to be a suitable tool to detect the defects in epoxy coatings. After two years of immersion in 3.89 percent NaCl− solution, the mild steel BB were severely corroded and a considerable weight loss was observed, whereas under heavy chloride attack, ECR showed no deterioration of epoxy coating and neither any corrosion of underlying steel. Results of this study show that the durability of reinforced concrete (RC) structures with respect to corrosion could be enhanced by using ECR, especially in harsh climatic conditions. Originality/value The corrosion performance of mild steel and ECR in concrete under a simulating splash zone environment is evaluated. EIS was used to evaluate the health of epoxy and corrosion state of underneath steel rebars. EIS was able to detect the defects in epoxy. The durability of RC structures could be enhanced in harsh climate regions by using ECR.


2013 ◽  
Vol 747-748 ◽  
pp. 270-275
Author(s):  
Qiang Fan ◽  
Wei Liang ◽  
Li Ping Bian ◽  
Man Qing Cheng

In view of low strength and poor corrosion resistance of Mg alloys, a Mg-12Al-0.7Si alloy was designed, fabricated and subjected to equal channel angular pressing (ECAP) in order to refine the microstructure. Microstructure observation and electrochemical performance test were conducted to investigate the influence of the microstructural variation subjected to multi-pass ECAP processing on the corrosion behavior of the alloy. The results showed that both α-Mg matrix and β-Mg17Al12of the alloy were significantly refined after processing for different passes (2,4,6,8) through route BC, and the 4-pass ECAPed alloy in 3.5% NaCl solution presents the lowest weight loss, lower corrosion current and higher corrosion potential in the polarization curves. The reason for high corrosion resistance of 4-pass ECAPed alloy and the effects of grain size of the matrix and the particle size, distribution of second phase and dynamic precipitates on corrosion behavior of the alloy were discussed.


Sign in / Sign up

Export Citation Format

Share Document