Uses of Glass in Architecture: Heat Losses of Buildings Based on Translucent Structures

2014 ◽  
Vol 680 ◽  
pp. 481-485 ◽  
Author(s):  
Yury Nikitin ◽  
Vera Murgul ◽  
Nikolay Vatin ◽  
Viktor Pukhkal

At present time translucent structures have appeared to be the most crucial issues regarding building envelopes in relation to high heat losses in the cold periods of the year. Development of the methods to improve thermal properties of translucent structures is considered to be an up-to-date issue. Heat losses of exhibition halls with varied dimensions ratio and energy consumption of heating systems have been determined for the case of the city of Saint-Petersburg (Russia)

Author(s):  
Alexandre Pépin ◽  
Louis Gosselin ◽  
Jonathan Dallaire

An office building located in Quebec City (Canada) with different envelope assemblies has been simulated in order to determine the energy consumption and thermal comfort that they provide. The resistance, thermal mass, and materials (concrete, cross-laminated timbers (CLT), and light-frame) are varied in a series of 164 different scenarios and the energy intensities for heating and cooling determined in each case, along with the discomfort index. Results show that the materiel used to provide thermal mass has a larger impact on comfort and energy consumption than the value of the thermal mass thickness itself. It was also attempted to correlate the performance of the envelope and its thermal mass with three dynamic thermal properties (i.e., dynamic transmittance, areal heat capacity, and decrement factor). Apart from thermal resistance, the internal areal heat capacity appeared to be the most important variable to explain variations of performance of the envelope.


2021 ◽  
Vol 23 ◽  
pp. 539-551
Author(s):  
Valeriі Deshko ◽  
Inna Bilous ◽  
Dmytro Biriukov ◽  
Olena Yatsenko

Buildings are the main consumer of energy resources in the total energy balance of the countries in Central and Eastern Europe, the main energy consumption is allocated for heating. Efficient use of energy resources for heating needs to a large extent depends on the efficiency of regulation of heating systems. In the article, dynamic mathematical models of a two-room typical apartment in Ukraine, built in 2016, were developed in Matlab and EnergyPlus software environment. The simulations were carried out using IWEC hourly climate data for the city of Kyiv. The results of simulations of thermal energy consumption in Matlab are characterized by a larger range of fluctuations of the heating system load, which is typical for the real operating conditions of the system with the controller of ON/OFF type. In EnergyPlus it is assumed that the gas boiler operates continuously in the ON mode. In the research, the change of load on the apartment heating system was studied at different numbers and locations of air temperature control sensors installation, according to which the controller of the autonomous gas boiler operates.


2021 ◽  
Vol 6 (3) ◽  
pp. 29-41
Author(s):  
Alexander Shkarovskiy ◽  
◽  
Anatolii Kolienko ◽  
Vitalii Turchenko ◽  
◽  
...  

The paper presents the results of studies aimed to increase the efficiency of centralized heating networks by improving heat supply control at the plant and at the local level. With this in view, we considered issues of choosing the optimal heat supply schedule and its influence on the efficiency of heat generation, transportation and use, as well as the influence of the heat carrier temperature on heat losses at the corner of the temperature curve. We also studied the influence of the heat carrier temperature in the return pipe of heating networks on the operation of heat generators by using various control methods. Another issue considered in the course of the study was the issue of ensuring the hydraulic and thermal stability of heating networks and heating systems connected to them by using the combined control method. The methodology of the study was based on the analysis of heat balance equations for the steady-state operation of a complex including a heating network and a building’s heating system. As a result, we obtained relationships that make it possible to determine the variation in the heat carrier flow rate and temperature depending on the heat load, as well as the reduction in energy consumption for heat carrier transportation. Recommendations were developed for the introduction of combined heat load control. A scheme for the reconstruction of central heat stations is proposed. The scientific and practical results of the study can be used to prevent significant heat losses, ensure optimal operation of heating networks, heat generators, and heating systems, reduce energy consumption, and increase the overall efficiency of centralized heating networks.


Author(s):  
A.E. Semenov

The method of pedestrian navigation in the cities illustrated by the example of Saint-Petersburg was investigated. The factors influencing people when they choose a route for their walk were determined. Based on acquired factors corresponding data was collected and used to develop model determining attractiveness of a street in the city using Random Forest algorithm. The results obtained shows that routes provided by the method are 14% more attractive and just 6% longer compared with the shortest ones.


Author(s):  
Jun Long ◽  
Yueyi Luo ◽  
Xiaoyu Zhu ◽  
Entao Luo ◽  
Mingfeng Huang

AbstractWith the developing of Internet of Things (IoT) and mobile edge computing (MEC), more and more sensing devices are widely deployed in the smart city. These sensing devices generate various kinds of tasks, which need to be sent to cloud to process. Usually, the sensing devices do not equip with wireless modules, because it is neither economical nor energy saving. Thus, it is a challenging problem to find a way to offload tasks for sensing devices. However, many vehicles are moving around the city, which can communicate with sensing devices in an effective and low-cost way. In this paper, we propose a computation offloading scheme through mobile vehicles in IoT-edge-cloud network. The sensing devices generate tasks and transmit the tasks to vehicles, then the vehicles decide to compute the tasks in the local vehicle, MEC server or cloud center. The computation offloading decision is made based on the utility function of the energy consumption and transmission delay, and the deep reinforcement learning technique is adopted to make decisions. Our proposed method can make full use of the existing infrastructures to implement the task offloading of sensing devices, the experimental results show that our proposed solution can achieve the maximum reward and decrease delay.


2021 ◽  
Vol 11 (11) ◽  
pp. 5108
Author(s):  
María Esther Liébana-Durán ◽  
Begoña Serrano-Lanzarote ◽  
Leticia Ortega-Madrigal

In order to achieve the EU emission reduction goals, it is essential to renovate the building stock, by improving energy efficiency and promoting total decarbonisation. According to the 2018/844/EU Directive, 3% of Public Administration buildings should be renovated every year. So as to identify the measures to be applied in those buildings and obtain the greatest reduction in energy consumption at the lowest cost, the Directive 2010/31/EU proposed a cost-optimisation-based methodology. The implementation of this allowed to carry out studies in detail in actual scenarios for the energy renovation of thermal envelopes of public schools in the city of Valencia. First, primary school buildings were analysed and classified into three representative types. For each type, 21 sets of measures for improving building thermal envelopes were proposed, considering the global cost, in order to learn about the savings obtained, the repayment term for the investment made, the percentage reduction in energy consumption and the level of compliance with regulatory requirements. The result and conclusions will help Public Administration in Valencia to draw up an energy renovation plan for public building schools in the city.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4084
Author(s):  
Hassan Bazazzadeh ◽  
Peiman Pilechiha ◽  
Adam Nadolny ◽  
Mohammadjavad Mahdavinejad ◽  
Seyedeh sara Hashemi safaei

A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40% , respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.


2018 ◽  
Vol 245 ◽  
pp. 12001
Author(s):  
Eliza Gumerova ◽  
Olga Gamayunova

Dispersion of air pollutants is caused often by vehicular emissions. It is necessary to define correctly parameters, which influence on emissions. In this article analysis of the parameters and calculations of Saint-Petersburg roads are shown. According to results, measures to improve the air state are defined. Solving of this ecological problem is implementation of development programs of urban public transport, the use of fuel with improved environmental characteristics, the development of electric modes of transport, traffic management methods to increase the capacity of the road and road network in the city.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seyedeh Samaneh Golzan ◽  
Mina Pouyanmehr ◽  
Hassan Sadeghi Naeini

PurposeThe modular dynamic façade (MDF) concept could be an approach in a comfort-centric design through proper integration with energy-efficient buildings. This study focuses on obtaining and/or calculating an efficient angle of the MDF, which would lead to the optimum performance in daylight availability and energy consumption in a single south-faced official space located in the hot-arid climate of Yazd, Iran.Design/methodology/approachThe methodology consists of three fundamental parts: (1) based on previous related studies, a diamond-based dynamic skin façade was applied to a south-faced office building in a hot-arid climate; (2) the daylighting and energy performance of the model were simulated annually; and (3) the data obtained from the simulation were compared to reach the optimum angle of the MDF.FindingsThe results showed that when the angle of the MDF openings was set at 30°, it could decrease energy consumption by 41.32% annually, while daylight simulation pointed that the space experienced the minimum possible glare at this angle. Therefore, the angle of 30° was established as the optimum angle, which could be the basis for future investment in responsive building envelopes.Originality/valueThis angular study simultaneously assesses the daylight availability, visual comfort and energy consumption on a MDF in a hot-arid climate.


2018 ◽  
Vol 33 ◽  
pp. 01008 ◽  
Author(s):  
Sergey Sementsov ◽  
Nadezhda Akulova ◽  
Severina Kurakina

Regularities of high-rise construction (implemented projects and developments) in Saint Petersburg and the Saint Petersburg agglomeration since the foundation of the city in 1703 till the 1950s are considered. Based on these regularities, a single spatially developed system of vertical dominants is formed. High-rise construction in the city and its suburbs started in the 1710s and continues up to the present time. In the considered decades (1703–1950s), high-rise construction mostly performed urban-planning functions (with vertical and symbolic dominants), relying on patterns of the visual perception of man-made landscapes under development. Since the 1710s, the construction of vertical dominants (mainly temples, spires of towers, lighthouses, etc.) of five ranks (depending on the altitude range and in relation to the background development) was conducted in territories of the entire agglomeration. These dominants were arranged in landscapes of the city and suburbs with almost mathematically precise accuracy and according to special regulations. Such dominants obtained particular descriptive and silhouette characteristics in accordance with the conditions of spatial perception. In some periods of city development, attempts were made to create monuments (symbolic dominants) of specific height and include those in the spatial system of high-rise dominants as significant elements of the city silhouette.


Sign in / Sign up

Export Citation Format

Share Document