Application of RF MEMS Switch for Reconfiguring Micromachined Antennas

2014 ◽  
Vol 704 ◽  
pp. 293-298
Author(s):  
Jija Rajmohan ◽  
M.R. Baiju

For mobile and wireless applications where the size of the system has to be minimized, antenna and RF components are to be integrated on to the same substrate. The contradicting requirements of the substrate with respect to the antenna and the RF circuit can be resolved by using micromachined antennas. If the principle of reconfigurability is applied to the micromachined antenna, it increases the versatality of the system. This paper proposes reconfigurability of micromachined antennas using RF MEMS switches. In the case of micromachined antennas, which involve low voltage signals, RF MEMS switches with low actuation voltage are required for achieving reconfigurability. In this paper an RF MEMS capacitive switch operating at a low actuation voltage of 1 Volt is presented

Author(s):  
Isaku Kanno ◽  
Takaaki Suzuki ◽  
Hironobo Endo ◽  
Hidetoshi Kotera

This paper presents the possibility of piezoelectric RF-MEMS switches for low voltage operation. The switches we fabricated consist of micro-cantilevers using PZT thin films with the length of 490 μm and the width of 87 μm. The cantilevers are actuated as unimorph actuators that can be deflected by applying voltage between upper and lower electrodes. We could obtain large tip deflection of 3 μm even at the low voltage of 5.0V, which is well compatible with conventional IC drivers. This result indicates that the RF-MEMS switches using piezoelectric PZT thin films is advantageous to the low voltage switching devices in RF components compared with conventionally proposed electrostatic ones.


Author(s):  
Chris Brown ◽  
Jacqueline Krim ◽  
Art Morris

RF MEMS switch lifetimes are limited by stiction of the moving components and degradation of the metal to metal contact points during cycling. Currently, maximum switch lifetimes are around 10 to 25 billion cycles. Past experimentation has shown that some stiction problems can be overcome by carefully controlling the operating parameters, but problems at the contact points remain [1]. It is believed that by developing a set of tribological design rules which limit the factors leading to catastrophic failure, switches can operate in excess of 100 billion cycles. Recent research has quantified the reliability and durability of gold contact points on RF MEMS switches as a function of current [2]. Most experimentation on RF MEMS switches has focused on controlling the operating parameters such as current, voltage, electrode materials, contact area, switching mode and force; however, limited work has been performed on a single device type in multiple environmentally controlled testing conditions such as vacuum, cryogenic temperatures, etc. This presentation will discuss performance of the wiSpry RF MEMS switch focusing on quantification of device reliability and failure mechanisms under various atmospheric and temperature conditions. Environmental testing conditions include switching in open air, vacuum and inert gasses, in temperatures ranging from 294 K to 4 K.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 864 ◽  
Author(s):  
Yasuyuki Naito ◽  
Kunihiko Nakamura ◽  
Keisuke Uenishi

A novel actuator toward a low voltage actuation and fast response in RF-MEMS (radio frequency micro-electro-mechanical systems) switches is reported in this paper. The switch is comprised of laterally movable triple electrodes, which are bistable by electrostatic forces applied for not only the on-state, but also the off-state. The bistable triple electrodes enable the implementation of capacitive series and shunt type switches on a single switch, which leads to high isolation in spite of the small gap between the electrodes on the series switch. These features of the actuator are effective for a low voltage and fast response actuation in both the on- and off-state. The structure was designed in RF from a mechanical point of view. The laterally movable electrodes were achieved using a simple, low-cost two-mask process with 2.0 µm thick sputtered aluminum. The characteristics of switching response time and actuation voltage were 5.0 µs and 9.0 V, respectively.


2014 ◽  
Vol 511-512 ◽  
pp. 732-736
Author(s):  
Qin Wen Huang ◽  
Xiang Guang Li ◽  
Yun Hui Wang ◽  
Yu Bin Jia

Based on a one-dimensional model of dielectric charging for capacitive RF MEMS switches, the accumulated charge density and actuation voltage shift were simulated. The results illustrate that rougher surface can reduce dielectric charging, so the dielectric layer should be fabricated much rougher during deposition process. But the capacitance ratio of switch will be decreased with rougher surface, which can cause a reduction of switch performance. Thus the dielectric surface roughness should be balanced in reliability and isolation.


2013 ◽  
Vol 562-565 ◽  
pp. 1238-1241
Author(s):  
Li Li Jiang ◽  
Shi Xing Jia ◽  
J. Zhu

In this paper the oxygen plasma dry release process for membrane-bridge RF MEMS switches is studied and several methods are used to improve the dry release process. The residual PR (Photoresist) on the device substrate after different process time are observed and measured in this paper. The measured data shows that the residual PR exponentially reduces with etch time. It is found that the residual PR on the bottom surface of the membrane bridge is more than that on the substrate. The completely released RF MEMS switch using oxygen plasma dry etch process is obtained.


2017 ◽  
Vol 2017 (NOR) ◽  
pp. 1-4
Author(s):  
Selin Tolunay Wipf ◽  
Alexander Göritz ◽  
Matthias Wietstruck ◽  
Maurizio Cirillo ◽  
Christian Wipf ◽  
...  

Abstract In this paper, the effect of silicon (Si) cap packaging on the BiCMOS embedded RF-MEMS switch performance is studied. The RF-MEMS switches are designed and fabricated in a 0.25μm SiGe BiCMOS technology for K-band (18 – 27 GHz) applications. The packaging is done based on a wafer-to-wafer bonding technique and the RF-MEMS switches are electrically characterized before and after the Si cap packaging. The experimental data shows the effect of the wafer-level Si cap package on the C-V and S-parameter measurements. The performed 3D FEM simulations prove that the low resistive Si cap, specifically 1 Ω·cm, results in a significant RF performance degradation of the RF-MEMS switch in terms of insertion loss.


2011 ◽  
Vol 403-408 ◽  
pp. 4199-4204 ◽  
Author(s):  
Tohid Zargar Ershadi ◽  
Ehsan Salimi ◽  
Habibollah Zolfkhani

This paper present, the design and simulation of the Ka to v band RF-MEMS capacitive switch. The mechanic design and analysis of the RF-MEMS switches are based on both the finite element method and the full-wave electromagnetic simulation. A double-beam switch with a high impedance short transmission line is proposed to improve RF characteristics. The electronic characteristics, of the switches including insertion and return losses in up-state position, were more than -0.11 dB and less than -23 dB , respectively and isolation on down-state position was more than -30 dB on 50 GHZ frequency. In order to make lower actuated voltage, a serpentine spring folded suspension beam and low actuated area were used so that some important issues such as life and reliability of switch were considered in design.


Author(s):  
S Girish Gandhi, I Govardhani, M Venkata Narayana, K Sarat Kumar

This is an attempt to compare three different shunt configured RF MEMS switches which offers a choice for applications in satellite and antennas. Advanced RF communication domain demands for design and modeling of RF MEMS switch which provides extremely reduced pull-in voltage, better isolation, low insertion loss, and with greater reliability. The proposed work manages with comparison of design modeling and performance of three different shunt configured RF MEMS switches. The proposed shunt configured RF MEMS switches are designed with different dimensions with different meandering techniques with perforations on beam structure helps in reducing the amount of voltage required for actuation of switch which is known as pull-in voltage. Comparative study of three different RF MEMS switches which involves in conducting electromechanical analysis are carried out using COMSOL multi physics tool and electromagnetic analysis are carried out using HFSS tool. Moreover the comparative study involves in comparing the values of pull-in voltage, switching time and capacitance, stress, insertion loss, return loss and isolation of three different RF MEMS switches. Proposed first switch model derives pull-in voltage of 16.9v with the switching time of 1.2µs, isolation of 47.70 dB at 5GHz and insertion loss of 0.0865 dB and return loss of 41.55 dB. Proposed second switch model derives pull-in voltage of 18.5v with the switching time of 2.5µs, isolation of 37.20 dB at 8GHz and insertion loss of 0.1177 dB and return loss of 38.60 dB. Proposed third switch model delivers pull-in voltage of 18.75v with the switching time of 2.56µs, isolation of 44.1552 dB at 8GHz and insertion loss of 0.0985 dB and return loss of 42.1004 dB.


Sign in / Sign up

Export Citation Format

Share Document