Analysis of Cycle Lifetimes and Failure Modes for RF MEMS Switches

Author(s):  
Chris Brown ◽  
Jacqueline Krim ◽  
Art Morris

RF MEMS switch lifetimes are limited by stiction of the moving components and degradation of the metal to metal contact points during cycling. Currently, maximum switch lifetimes are around 10 to 25 billion cycles. Past experimentation has shown that some stiction problems can be overcome by carefully controlling the operating parameters, but problems at the contact points remain [1]. It is believed that by developing a set of tribological design rules which limit the factors leading to catastrophic failure, switches can operate in excess of 100 billion cycles. Recent research has quantified the reliability and durability of gold contact points on RF MEMS switches as a function of current [2]. Most experimentation on RF MEMS switches has focused on controlling the operating parameters such as current, voltage, electrode materials, contact area, switching mode and force; however, limited work has been performed on a single device type in multiple environmentally controlled testing conditions such as vacuum, cryogenic temperatures, etc. This presentation will discuss performance of the wiSpry RF MEMS switch focusing on quantification of device reliability and failure mechanisms under various atmospheric and temperature conditions. Environmental testing conditions include switching in open air, vacuum and inert gasses, in temperatures ranging from 294 K to 4 K.

2013 ◽  
Vol 562-565 ◽  
pp. 1238-1241
Author(s):  
Li Li Jiang ◽  
Shi Xing Jia ◽  
J. Zhu

In this paper the oxygen plasma dry release process for membrane-bridge RF MEMS switches is studied and several methods are used to improve the dry release process. The residual PR (Photoresist) on the device substrate after different process time are observed and measured in this paper. The measured data shows that the residual PR exponentially reduces with etch time. It is found that the residual PR on the bottom surface of the membrane bridge is more than that on the substrate. The completely released RF MEMS switch using oxygen plasma dry etch process is obtained.


2017 ◽  
Vol 2017 (NOR) ◽  
pp. 1-4
Author(s):  
Selin Tolunay Wipf ◽  
Alexander Göritz ◽  
Matthias Wietstruck ◽  
Maurizio Cirillo ◽  
Christian Wipf ◽  
...  

Abstract In this paper, the effect of silicon (Si) cap packaging on the BiCMOS embedded RF-MEMS switch performance is studied. The RF-MEMS switches are designed and fabricated in a 0.25μm SiGe BiCMOS technology for K-band (18 – 27 GHz) applications. The packaging is done based on a wafer-to-wafer bonding technique and the RF-MEMS switches are electrically characterized before and after the Si cap packaging. The experimental data shows the effect of the wafer-level Si cap package on the C-V and S-parameter measurements. The performed 3D FEM simulations prove that the low resistive Si cap, specifically 1 Ω·cm, results in a significant RF performance degradation of the RF-MEMS switch in terms of insertion loss.


2014 ◽  
Vol 704 ◽  
pp. 293-298
Author(s):  
Jija Rajmohan ◽  
M.R. Baiju

For mobile and wireless applications where the size of the system has to be minimized, antenna and RF components are to be integrated on to the same substrate. The contradicting requirements of the substrate with respect to the antenna and the RF circuit can be resolved by using micromachined antennas. If the principle of reconfigurability is applied to the micromachined antenna, it increases the versatality of the system. This paper proposes reconfigurability of micromachined antennas using RF MEMS switches. In the case of micromachined antennas, which involve low voltage signals, RF MEMS switches with low actuation voltage are required for achieving reconfigurability. In this paper an RF MEMS capacitive switch operating at a low actuation voltage of 1 Volt is presented


Author(s):  
S Girish Gandhi, I Govardhani, M Venkata Narayana, K Sarat Kumar

This is an attempt to compare three different shunt configured RF MEMS switches which offers a choice for applications in satellite and antennas. Advanced RF communication domain demands for design and modeling of RF MEMS switch which provides extremely reduced pull-in voltage, better isolation, low insertion loss, and with greater reliability. The proposed work manages with comparison of design modeling and performance of three different shunt configured RF MEMS switches. The proposed shunt configured RF MEMS switches are designed with different dimensions with different meandering techniques with perforations on beam structure helps in reducing the amount of voltage required for actuation of switch which is known as pull-in voltage. Comparative study of three different RF MEMS switches which involves in conducting electromechanical analysis are carried out using COMSOL multi physics tool and electromagnetic analysis are carried out using HFSS tool. Moreover the comparative study involves in comparing the values of pull-in voltage, switching time and capacitance, stress, insertion loss, return loss and isolation of three different RF MEMS switches. Proposed first switch model derives pull-in voltage of 16.9v with the switching time of 1.2µs, isolation of 47.70 dB at 5GHz and insertion loss of 0.0865 dB and return loss of 41.55 dB. Proposed second switch model derives pull-in voltage of 18.5v with the switching time of 2.5µs, isolation of 37.20 dB at 8GHz and insertion loss of 0.1177 dB and return loss of 38.60 dB. Proposed third switch model delivers pull-in voltage of 18.75v with the switching time of 2.56µs, isolation of 44.1552 dB at 8GHz and insertion loss of 0.0985 dB and return loss of 42.1004 dB.


Author(s):  
Lei L. Mercado ◽  
Shun-Meen Kuo ◽  
Tien-Yu Tom Lee ◽  
Russ Lee

RF MEMS switches offer significant performance advantages in high frequency RF applications. The switches are actuated by electrostatic force when voltage was applied to the electrodes. Such devices provide high isolation when open and low contact resistance when closed. However, during the packaging process, there are various possible failure modes that may affect the switch yield and performance. The RF MEMS switches were first placed in a package and went through lid seal at 320°C. The assembled packages were then attached to a printed circuit board at 220°C. During the process, some switches failed due to electrical shorting. More interestingly, more failures were observed at the lower temperature of 220°C rather than 320°C. The failure mode was associated with the shorting bar and the cantilever design. Finite element simulations and simplified analytical solutions were used to understand the mechanics driving the behaviors. Simulation results have shown excellent agreement with experimental observations and measurements. Various solutions in package configurations were explored to overcome the hurdles in MEMS packaging and achieve better yield and performance.


Author(s):  
Seung Min Yeo ◽  
Spyros I. Tseregounis ◽  
Andreas A. Polycarpou ◽  
Adam Fruehling ◽  
Dimitrios Peroulis

Topographical changes within the contact area as a function of cycling could be a critical factor causing failure and reliability issues in RF MEMS switch operation. In this paper, gold-to-gold contact, cantilever-type RF MEMS switches were tested (cold-switching mode) for different number of cycles, namely, 10, 102, 103, 104, 105, and 106. After the cycling tests, the contact area of each switch was scanned using optical microscopy, scanning electron microscopy and atomic force microscopy to quantify the exact gold-to-gold contact surface changes, leading to adhesion failures (at about 106 cycles). Detailed roughness analysis was carried out to better quantify topographical changes on the contact surface and relate them to failures. It was found that the material transfer from the top beam to the bottom substrate was dominant, and observed after only few cycles. Adhesion failure of gold-to-gold contact switches could be attributed to large protrusions formed on the bottom surface as the switch cycles over 105 times.


Author(s):  
Peter A. Kolis ◽  
Marisol Koslowski ◽  
Anil K. Bajaj

We present simulations of the dynamic response of radio frequency micro-electro-mechanical-systems (RF-MEMS) switches undergoing creep deformation. The model includes a microscale-informed Coble creep formulation incorporated in a beam model of an electrostatically actuated RF-MEMS switch, and it is solved using a Ritz-Galerkin based modal expansion. The resulting effects on the long-term device behavior as well as the implications of uncertainty in the device geometry and material parameters are studied. We find that the addition of creep to the beam model results in an undesired degradation of the device performance, as evidenced by decreases in the closing and release voltages.


Author(s):  
Isaku Kanno ◽  
Takaaki Suzuki ◽  
Hironobo Endo ◽  
Hidetoshi Kotera

This paper presents the possibility of piezoelectric RF-MEMS switches for low voltage operation. The switches we fabricated consist of micro-cantilevers using PZT thin films with the length of 490 μm and the width of 87 μm. The cantilevers are actuated as unimorph actuators that can be deflected by applying voltage between upper and lower electrodes. We could obtain large tip deflection of 3 μm even at the low voltage of 5.0V, which is well compatible with conventional IC drivers. This result indicates that the RF-MEMS switches using piezoelectric PZT thin films is advantageous to the low voltage switching devices in RF components compared with conventionally proposed electrostatic ones.


2016 ◽  
Vol 29 (2) ◽  
pp. 177-191 ◽  
Author(s):  
Zlatica Marinkovic ◽  
Vera Markovic ◽  
Tomislav Ciric ◽  
Larissa Vietzorreck ◽  
Olivera Pronic-Rancic

The increased growth of the applications of RF MEMS switches in modern communication systems has created an increased need for their accurate and efficient models. Artificial neural networks have appeared as a fast and efficient modelling tool providing similar accuracy as standard commercial simulation packages. This paper gives an overview of the applications of artificial neural networks in modelling of RF MEMS switches, in particular of the capacitive shunt switches, proposed by the authors of the paper. Models for the most important switch characteristics in electrical and mechanical domains are considered, as well as the inverse models aimed to determine the switch bridge dimensions for specified requirements for the switch characteristics.


Sign in / Sign up

Export Citation Format

Share Document