Fabrication and Analysis of β-Sialon Whiskers from Fly Ash by Carbon Thermal Reduction-Nitridation

2015 ◽  
Vol 723 ◽  
pp. 610-614
Author(s):  
Jing Zhang ◽  
Jiang Long Yu ◽  
Huan Zhao ◽  
Jun Shuai Liu

β-Sialonwhiskers which the molecular structuralformula of β-Sialonis Si3Al3O3N5(z = 3) were synthesized from fly ash and graphite under appropriate technological conditions by carbothermal reduction–nitridation process. The effects of carbon content, reaction temperature and reaction time on synthesis ofβ-Sialonwere analysed by XRD, SEM techniques. The results proved that, the condition of the carbon content over 80% is the best parameter to promote theβ-Sialon powder production. Compared to other kinds of temperature, 1430 °C is the optimal temperature to promoteβ-Sialon powder generation. Compared to 3h, holding time of 6h is promoting theβ-Sialon powder generation.The main morphology of β-Sialon was rod-like whisker.

2021 ◽  
Vol 10 (1) ◽  
pp. 157-168
Author(s):  
Biwei Luo ◽  
Pengfei Li ◽  
Yan Li ◽  
Jun Ji ◽  
Dongsheng He ◽  
...  

Abstract The feasibility of industrial waste fly ash as an alternative fluxing agent for silica in carbothermal reduction of medium-low-grade phosphate ore was studied in this paper. With a series of single-factor experiments, the reduction rate of phosphate rock under different reaction temperature, reaction time, particle size, carbon excess coefficient, and silicon–calcium molar ratio was investigated with silica and fly ash as fluxing agents. Higher reduction rates were obtained with fly ash fluxing instead of silica. The optimal conditions were derived as: reaction temperature 1,300°C, reaction time 75 min, particle size 48–75 µm, carbon excess coefficient 1.2, and silicon–calcium molar ratio 1.2. The optimized process condition was verified with other two different phosphate rocks and it was proved universally. The apparent kinetics analyses demonstrated that the activation energy of fly ash fluxing is reduced by 31.57 kJ/mol as compared with that of silica. The mechanism of better fluxing effect by fly ash may be ascribed to the fact that the products formed within fly ash increase the amount of liquid phase in the reaction system and promote reduction reaction. Preliminary feasibility about the recycling of industrial waste fly ash in thermal phosphoric acid industry was elucidated in the paper.


2008 ◽  
Vol 368-372 ◽  
pp. 910-912 ◽  
Author(s):  
Jun Tong Huang ◽  
Ming Hao Fang ◽  
Yan Gai Liu ◽  
Zhao Hui Huang

Single phase Sialon was synthesized successfully from fly ash by carbothermal reductionnitridation reaction in this paper. The effects of synthesizing temperature (1200°C, 1300°C, 1400°C and 1450°C) and carbon content (stoichiometric content, exceeding 10%, 50% and 100%) on the final production were studied by XRD and SEM. Synthesis mechanism of β-Sialon was also analysized. The results indicated that single phase β-Sialon with z=3 was obtained using fly ash as raw materials and carbon black of stoichiometric content as reducer by carbothermal reduction- nitridation reaction in flow nitrogen at 1450°C for 3h. Temperature and content of carbon had significant effect on the synthesis of β-Sialon.


1999 ◽  
Vol 14 (11) ◽  
pp. 4437-4442 ◽  
Author(s):  
Zhidong Yao ◽  
Chikashi Tamura ◽  
Motohide Matsuda ◽  
Michihiro Miyake

Tobermorite was synthesized successfully from waste incineration fly ash by hydrothermal treatment in the presence of sodium hydroxide solution. The tobermorite synthesis was examined as a function of reaction temperature, time, and NaOH concentration. The formation of tobermorite was identified in all of the fly ash treated with NaOH at 180 °C, followed by the minor generations of sodalite and cancrinite phases with increasing NaOH concentration and extending reaction time. The NaOH-treated fly ash revealed the uptake behaviors for Cs+ and NH4+, whereas the fly ash untreated with NaOH solution did not show that. The uptake amounts of resulting products were also determined: 0.40 mmol/g for Cs+ and 0.35 mmol/g for NH4+ in the fly ash treated with 2.0 M NaOH at 180 °C for 20 h.


2020 ◽  
Vol 9 (1) ◽  
pp. 349-358
Author(s):  
Biwei Luo ◽  
Pengfei Li ◽  
Yan Li ◽  
Pengpeng He ◽  
Jun Ji ◽  
...  

AbstractPhosphorus extraction from phosphorus rock was conducted by carbothermal reduction with silica and coke. The effects of reaction temperature, reaction time, coke excess coefficient, molar ratio of silicon–calcium, and phosphorus rock particle size on the phosphorus reduction rate were investigated by the response surface methodology (RSM). The central composite design (CCD) with five factors and five levels was used to explore the effects of variables’ interactions on the phosphorus reduction rate. The results showed that there are significant interactions between reaction time and temperature; reaction temperature and molar ratio of silicon–calcium; reaction temperature and phosphorus rock particle size; coke excess coefficient and molar ratio of silicon–calcium; and coke excess coefficient and phosphorus rock particle size. The optimum conditions in the experimental range are reaction time 92 min, reaction temperature 1340°C, coke excess coefficient 1.27, molar ratio of silicon–calcium 1.28, and phosphorus rock particle size 75–106 µm, which were derived from the quadratic statistic model. Under these conditions, the phosphorus reduction rate can reach 96.88%, which is close to the model prediction value 99.40%. The optimized carbothermal reduction conditions of phosphorus rock by the RSM are helpful to reduce the energy cost of thermal phosphoric acid process.


2013 ◽  
Vol 726-731 ◽  
pp. 2790-2794
Author(s):  
Guang Hui Bai ◽  
Lin Lv ◽  
Tong Song Wang ◽  
Peng Cheng Li ◽  
Cai Ling He

It is the first time to remove sodium from the fly ash red mud by soda-lime sintering process to determine whether the fly ash red mud can be used in cement production. This paper studies the effects of the reaction time, the reaction temperature, the ratio of liquid to solid, and the amount of sodium removal agent on the removal of milk of lime method of fly ash red mud in sodium. The optimal reaction conditions are that: the reaction time is 120min, the reaction temperature is 90°C, the ratio of liquid to solid ratio is 6:1, and the ratio of sodium removal agent Ca (OH) 2 to the red mud of Na2O use ratio is 9:1. Under this condition, the sodium removal rate (Na2O, the same below) to 57.2%, the total sodium content in fly ash red mud decreases from 4.7% to 1.8% after sodium removal, achieving the expected goal.


2006 ◽  
Vol 510-511 ◽  
pp. 110-113
Author(s):  
Young Sook Shim ◽  
Woo Keun Lee

In this study, we studied to find the most suitable condition for the preparation of adsorbent by hydrothermal treatment of fly ash from the municipal solid waste incinerator (MSWI). There are many variables that affect the adsorptive characteristics in our study. With the variation of which discussed the effect such as the concentration of NaOH, reaction temperature, reaction time, solid/liquid ratio, and so on. The phase of adsorbent, its morphology and cation exchange capacity (CEC) were analyzed to evaluate their effects. The phase of adsorbent after treatment was identified by X-ray diffraction (XRD), the morphology was examined by scanning electron microscopy (SEM), and the CEC was analyzed by the ammonium acetate method. The maximum CEC value was obtained under the condition of 3N NaOH, 100°C of reaction temperature, 12 hr of reaction time, and 1:10 of solid/liquid ratio. The CEC was 68 meq/100g in this condition, which was 8 times the amount of raw fly ash.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 359 ◽  
Author(s):  
Mei-Chen Sung ◽  
Ya-Fen Wang ◽  
Shang-Che Chen ◽  
Cheng-Hsien Tsai

The synthesis of aluminum nitride (AlN) powders is traditionally done via the thermal nitridation process, in which the reaction temperature reaches as high as 960 °C, with more than several hours of reaction time. Moreover, the occurrence of agglomeration in melting Al particles results in poor AlN quality and a low efficiency of nitridation. In this study, an atmosphere-pressure microwave-plasma preceded the pre-synthesis process. This process operates at 550 °C for 2–10 min with the addition of NH4Cl (Al: NH4Cl = 1:1) for generating a hard AlN shell to avoid the flow and aggregation of the melting Al metals. Then, the mass production of AlN powders by the thermal nitridation process can be carried out by rapidly elevating the reaction temperature (heating rate of 15 °C/min) until 1050 °C is reached. X-Ray Diffractometer (XRD) crystal analysis shows that without the peak, Al metals can be observed by synthesizing AlN via plasma nitridation (at 550 °C for 2 min, Al: NH4Cl = 1:1), followed by thermal nitridation (at 950 °C for 1 h). Moreover, SEM images show that well-dispersed AlN powders without agglomeration were produced. Additionally, the particle size of the produced AlN powder (usually < 1 μm) tends to be reduced from 2–5 μm (Al powders), resulting in a more efficient synthesizing process (lower reaction temperature, shorter reaction time) for mass production.


2011 ◽  
Vol 194-196 ◽  
pp. 2179-2182 ◽  
Author(s):  
Bei Yue Ma ◽  
Ying Li ◽  
Li Bing Xu ◽  
Yu Chun Zhai

β-Sialon powder was synthesized by in-situ carbothermal reduction-nitridation process, with fly ash and carbon black as raw materials. The influence of raw materials composition on synthesis process was investigated, and the phase composition and microstructure of the synthesized products were characterized by X-ray diffraction and scanning electronic microscope. The carbothermal reduction-nitridation reaction process was also discussed. It was found that increasing carbon content in a sample could promote the decomposition of mullite in fly ash and the formation of β-Sialon. The β-Sialon could be synthesized at 1550°C for 6h by heating the sample with the mass ratio of fly ash to carbon black of 100:56. The β-Sialon as-received in this study existed as granular with an average particle size of about 2μm. The carbothermal reduction-nitridation reaction process consisted of the nitridation processes of mullite, SiO2and Al2O3in fly ash as well as the conversion process of X-Sialon to β-Sialon.


2011 ◽  
Vol 366 ◽  
pp. 366-369
Author(s):  
Feng Gao ◽  
Rong Fu ◽  
Ming Yang Qian ◽  
Zhu Min Wang ◽  
Xiang Zhang

Response surface methodology was used to optimize the soaking Mg leaching ratio from the boron slurry screened by 25 fractional factorial design. Five effective factors such as H2SO4 concentrations, reaction time, reaction temperature and stir velocity were tested by using 25 fractional factorial design criterion and three effective factors H2SO4 concentrations, reaction time and reaction temperature showed significant effect(P2SO4 concentrations of 0.29mol/l, reaction time of 90 min and reaction temperature of 50°C. Three runs of additional confirmation experiments were conducted. The mixture magnesium leaching value was 58.20%.


2014 ◽  
Vol 915-916 ◽  
pp. 713-716
Author(s):  
Qing Zhang ◽  
Jing Tian ◽  
Zhi Qi Cao ◽  
Ru Xia Xu ◽  
Zhen Zhen Sun ◽  
...  

In this investigation, Schiff bases aluminum complex was synthesized and used as the initiator in the polymerization of D,L-lactide. The aluminum complex was characterized by infrared spectroscopy (IR), and nuclear magnetic resonance spectroscopy (NMR). The influences of different factors, including reaction time, reaction temperature, and the ratio of D, L-lactide/Al3+ on the synthesis of polylactide were described. The results showed that Schiff bases aluminum complex could be successfully applied in the ring opening polymerization. The optimum condition of the ring opening polymerization of D,L-lactide, which included D,L-lactide/Al3+ (mol/mol) ratio of 250, reaction temperature of 120 °C, and reaction time of 16 hours.


Sign in / Sign up

Export Citation Format

Share Document