An Investigation about Welding Parameters of Polypropylene Matrix Composite

2015 ◽  
Vol 729 ◽  
pp. 67-72
Author(s):  
Umit Huner ◽  
E. Selcuk Erdogan

This paper presents an experimental investigation of heated tool welding of polypropylene matrix composite. The goals of this paper are to investigate the issues of local changes of welding strength that depends on heating time. For experimental procedure, specimens were injection molded as ISO tensile test specimens and matrix was reinforced by organic and inorganic materials. In addition, welding of specimens was carried out by non-contact heated tool butt welding process. Within the range of the weld process parameters were investigated, the highest weld strength dependent on heating time was achieved of the order of 94% to the base strength of the material. And then these specimen’s maximum welding strengths and energy at break point properties that were depend on heating time have been compared.

2020 ◽  
Vol 10 (1) ◽  
pp. 674-680
Author(s):  
Piotr Sęk

AbstractThe purpose of the experiment was to study the influence of the laser beam in pulse mode on metallic foils in order to obtain a spot weld. The welding process was carried out using the overlap weld method, using spot welds in various quantities. The Nd - YAG BLS 720 pulsed laser was used to conduct the experiment. The impact of the number of spot welds on the value of force needed to break the sample was examined. A number of measurements were carried out to determine the best process parameters. Butt welding and overlap welding were also performed using a continuous weld consisting of spot welds. Weld strength tests were performed to select the most appropriate parameters for the process under consideration.


2020 ◽  
Vol 14 (3) ◽  
pp. 369-374
Author(s):  
Željko Bilić ◽  
Ivan Samardžić ◽  
Nedjeljko Mišina ◽  
Katarina Stoić

As already known, no proper control or process control parameter which absolutely guarantees a high level quality of joints made by electro-resistive welding has been established so far, especially when all possible parameters are taken into account during the welding process. Due to the process of butt-welding being very short-lived, ensuring quality of the joints is a difficult and under-researched problem. The application of non-destructive testing methods to the control interface joints is also not reliable. Therefore, further research in this area should concentrate on studying the influence of basic welding parameters, and calculating their direct or indirect impact can serve to achieve a highquality welded joint with for practice sufficient accuracy.


2007 ◽  
Vol 129 (5) ◽  
pp. 859-867 ◽  
Author(s):  
James D. Van de Ven ◽  
Arthur G. Erdman

Two laser transmission welding experiments involving polyvinyl chloride are presented that aim to validate a previously presented welding model while helping to further understand the relationship between welding parameters and weld quality. While numerous previous research papers have presented the results of laser welding experiments, there exists minimal work validating models of the welding process. The first experiment explores the interaction of laser power and welding velocity while the second experiment explores the influence of clamping pressure. Using the weld width as the primary model output, the agreement between the welding experiments and the model have an average error of 5.6%. This finding strongly supports the validity of the model presented in Part I of this two paper set (Van de Ven and Erdman, 2007, ASME J. Manuf. Sci. Eng., 129, pp. 849–858). Additional information was gained regarding the operating window for laser transmission welding and the thermal decomposition of polyvinyl chloride. Clamping pressure was found to provide a small, but not statistically significant, influence on the visual appearance, weld width, and weld strength.


2013 ◽  
Vol 814 ◽  
pp. 187-192 ◽  
Author(s):  
Radu Cojocaru ◽  
Lia Boțilă ◽  
Cristian Ciucă ◽  
Horia Florin Dascau ◽  
Victor Verbiţchi

Aluminum alloys are widely used in aerospace, automotive, railway and shipbuilding industry, as materials having remarkable properties for applications in these fields. For this reason, in recent years the interest for friction stir lap welding of sheets from these alloys increased.The behaviour of welding materials from the plastic and mechanic viewpoint are different in case of friction stir lap welding compared to friction stir butt welding.The welding tools for friction stir lap welding can have different configurations and sizes compared to butt welding. The used welding parameters must be reconsidered in order to obtain a proper flow of material for obtaining a friction stir lap welded joint.In addition, it is very important how to prepare the sheets surfaces that come into contact and their placement (relative to each other).The paper presents considerations regarding friction stir lap welding, with examples/concrete results obtained in welding of similar and dissimilar light alloys (alloys of aluminum, magnesium and titanium). It also presents data on the characteristics of obtained welded joints, related with particularities of friction stir lap welding.The obtained results showed that light alloys sheets used in various industrial fields can be joined with respect of basis conditions specific for the friction stir lap welding process.


2011 ◽  
Vol 264-265 ◽  
pp. 1270-1280
Author(s):  
Marco Brandizzi ◽  
Annunziata Anna Satriano ◽  
Luigi Tricarico

CO2 laser - Metal Inert Gas (MIG) hybrid welding process was investigated in the butt welding of Ti-6Al-4V titanium alloy sheets of 3.0mm in thickness. Using a Design of Experiment (DoE) approach, bead on plate tests were planned with the aim to analyze the effect of laser and laser-MIG welding parameters on the bead shape, hardness profiles in the weld cross section and welding efficiency. Butt welds performed in correspondence of the bead on plate working conditions which assure the complete penetration of the samples, the absence of undercuts and the maximum welding efficiency, confirm the results of the bead on plate tests and highlights the gap bridging ability of the hybrid welding process.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1444 ◽  
Author(s):  
Kangnian Wang ◽  
Huimin Wang ◽  
Hongyu Zhou ◽  
Wenyue Zheng ◽  
Aijun Xu

The demands for the connection between thin dissimilar and similar materials in the fields of microelectronics and medical devices has promoted the development of laser impact welding. It is a new solid-state metallurgical bonding technology developed in recent years. This paper reviews the research progress of the laser impact welding in many aspects, including welding principle, welding process, weld interface microstructure and performance. The theoretical welding principle is the atomic force between materials. However, the metallurgical combination of two materials in the solid state by atomic force but almost no diffusion has not been confirmed by microstructure observation. The main theories used to explain the wave formation in impact welding were compared to conclude that caved mechanism and the Helmholz instability mechanism were accepted by researchers. The rebound of the flyer is still a critical problem for its application. With proper control of the welding parameters, the weld failure occurs on the base materials, indicating that the weld strength is higher than that of the base materials. Laser impact welding has been successfully applied in joining many dissimilar materials. There are issues still remained unresolved, such as surface damage of the flyer. The problems faced by laser impact welding were summaried, and its future applications were proposed. This review will provide a reference for the studies in laser impact welding, aiming process optimization and industrial application.


Author(s):  
Haiyang Lei ◽  
Yongbing Li ◽  
Blair E. Carlson ◽  
Zhongqin Lin

Dissimilar joining of aluminum to steel poses a challenge for arc welding. In this study, aluminum AA6061-T6 and hot dipped galvanized DP590 steel were joined using the Fronius cold metal transfer (CMT) welding process applying an edge plug welding mode (EPW). The correlation of the welding parameters, weld characteristics, and weld strength was systematically investigated. It was found that the EPW mode created a zinc-rich zone at the weld root along the Al–steel faying interface which transitioned to a continuous and compact intermetallic compounds (IMC) layer in the middle portion of the joint. The fracture propagation in lap-shear specimens was affected by this increase of IMC layer thickness. At a wire feed speed (wfs) of 5.6 m/min, the fracture initiated along the zinc-rich layer at the faying interface and then, upon meeting the compact IMC layer, propagated into the aluminum weld nugget. Propagation followed a path within the weld nugget along the boundary between columnar and equiaxed grains leading to weld nugget pullout upon fracture. For IMC layer peak thicknesses below 10 μm, the strength increased as a function of weld nugget diameter. However, larger heat inputs resulted in IMC layer thicknesses greater than 10 μm and interfacial fracture.


Author(s):  
Xudong Cheng ◽  
Xiaochun Li

The objective of this research is to develop an effective method, i.e., ultrasonic metal welding (USMW), to embed micro thin film sensors for metal tooling, and use micro thin film thermocouple study the heat generation during USMW. A complete understanding of the fundamental mechanisms of USMW does not yet exist, and the function of heat generation on weld formation is especially in argument due to the lack of the method to measure the temperature at the welding interface. Continuing on the previous preliminary study [1] which proved that thin film sensors can survive ultrasonic welding process, significant advances were made to improve sensor reliability as well as sensor fabrication effectiveness. These include the development of a new approach for batch production of the sensor units, improvement of the adhesion between metal encapsulating layers for the sensor, as well as the adhesion between the sensing layer and the dielectric layer. Welding experiments are conducted using a series of welding parameter settings with the in-situ data acquisition of temperature 50 μm away from the welding interface. Attempts are then made to correlate the heat generation to welding parameters. With the mechanical testing of the weld strength, the possibility of using heat generation as a weld strength indicator is explored.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Jianwen Yuan ◽  
Chao Huang ◽  
Jimin Chen ◽  
Furong Liu ◽  
Yi Qiu

The feasibility of laser direct welding quad flat pack (QFP) device without solder is analyzed and practiced. The relations between the tensile strength of QFP joints and laser welding parameters are investigated, and the optimized parameters are obtained. Further study of weld microstructure under the optimum parameters indicates the dependable metallurgical bonding has been formed. In accordance with the experimental parameters, the finite-element method is employed to simulate the temperature field of the welding process. The simulation results at optimum parameters of the welding spot's temperature distribution are discussed. The temperature rises linearly with the increment of loaded laser heating time, and the center temperature is rising much faster than other locations. The temperature is similar with actual measured highest temperature in this circumstance. It demonstrates the established model is satisfied, and the simulation result is reliable, which is significant to guide practical application.


2014 ◽  
Vol 592-594 ◽  
pp. 630-635 ◽  
Author(s):  
S. Ramesh Babu ◽  
P. Karthik ◽  
S. Karthik ◽  
S. Arun Kumar ◽  
Joel Marris

In the present study AA5083 and AA6061 were welded using friction stir welding process by controlling the various welding parameters viz. rotational speed, welding speed and Tool axial force for two different tool profiles. Aluminum alloys 5083 and 6061 have similar properties and they both are widely used in marine industries and other transportation industries. In this work the effect of various parameters on the mechanical properties viz. tensile strength and impact strength were studied. In this study the Taguchi approach was used as a design of experiment to set optimum parameters. The experiments were done using Taguchi’s L9 orthogonal array. Analysis of variance test was also performed to obtain the effect of the parameters on the weld strength. Both DOE and ANOVA were performed using MINITAB software.


Sign in / Sign up

Export Citation Format

Share Document