Enhancement the Enzymatic Activity of Phenol-Degrading Microbes Immobilized on Agricultural Residues during the Biodegradation of Phenol in Petrochemical Wastewater

2015 ◽  
Vol 737 ◽  
pp. 549-556 ◽  
Author(s):  
Chang Jian Xie ◽  
Biao Fan ◽  
Qing Qing Sun ◽  
Yong Qi Ye ◽  
Ming Hua Li ◽  
...  

In this study, we illustrated enhanced biodegradation enzyme activity and the strains growth using the plants residues as carriers during the biodegradation of phenol in petrochemical wastewater. The three phenol-degrading strains named as A1, A2 and A3 were selected for an immobilized microorganism technique. A1, A2 and A3 were identified asPenicilliumoxalicum,Aspergillussp. andSphingobacteriumsp. using detailed morphological, biochemical and molecular characterization. The growth and degradation rate of phenol in wastewater by strains A1, A2 and A3 pre-grown in the agricultural residues (peanut shell) were higher than the free strains. Compared with the free strains,the enzyme activity of strains A1,A2 and A3, using the residues for pre-grown, increased 29.01 U/L, 30.30 U/L and 38.07 U/L, respectively. Hence, the immobilized microorganism technique is conducive to the phenol degradation.

Genetics ◽  
1980 ◽  
Vol 94 (2) ◽  
pp. 327-339 ◽  
Author(s):  
Richard Snow

ABSTRACT The HIS1 and THR4 loci are the structural genes for phosphoribosyl-ATP pyrophosphorylase and threonine synthetase, respectively. The allele his1-IS has no enzyme activity at 30", but does have activity at 15" provided the cell contains the wild-type THR4 allele or a suppressing allele at another locus, designated SUP(his1-1S). Under these conditions, cells with the hisl-IS mutation are capable of growth on minimal medium at 15". Three kinds of reversions of a hisl-IS thr4 sup(his1-IS) strain to histidine prototrophy have been obtained: (1) his1-IS locus reversions to HIS1 that restore growth without added histidine at 30", (2)  thr4 reversions to THR4 that simultaneously eliminate the requirement for threonine and restore the low-temperature effect on the his1-IS allele, and (3)mutations from sup to SUP. The SUP allele is not an ochre suppressor, and it is not linked to either HISI, THR4 or a centromere. It may represent a missense suppressor. I t is proposed that the effect ofTHR4 is caused by aggregation of the wild-type threonine synthetase with defective his1-IS monomers, causing a favorable conformational change in the histidine protein that restores limited enzymatic activity. This can be regarded as a case of complementation between nonhomologous proteins.


2021 ◽  
Vol 233 ◽  
pp. 02034
Author(s):  
Wei Zong ◽  
Shan Liu ◽  
Jeonyun Yun ◽  
Xiong Xiao ◽  
Zujun Deng ◽  
...  

Resveratrol in Polygonum cuspidatum is a β-glycoside, which can be hydrolyzed to resveratrol by β-glucosidase. it is an efficient production process to degrade polydatin from Polygonum cuspidatum extract by immobilized β-glucosidase. It is of great significance to explore suitable immobilization conditions to improve the catalytic efficiency and reusability of β-glucosidase for polydatin degradation and cost reduction. In this paper, the recombinant Escherichia coli bgl2238, which was screened and constructed from corn soil of Heilongjiang Province in the early laboratory, was immobilized by chitosan adsorption and glutaraldehyde crosslinking. The preparation conditions and immobilization process of bgl2238 were determined by single factor method: the optimal crosslinking time was 1 h, the optimal crosslinking temperature was 20 °C, the recovery rate of enzyme activity of bgl2238 was 87 %, and the enzyme activity was 859.65 mU/g. The optimum temperature of the immobilized bgl2238 is 50 °C, which is 6 °C higher than that of the free bgl2238, and the temperature stability and pH stability are improved. After six consecutive hydrolysis of Polygonum cuspidatum, the degradation rate of polydatin is still over 70 %, which proves that the immobilized bgl2238 has good reusability. This will be helpful to evaluate the application prospect of β - glucosidase immobilized in this system and determine the best conditions for its production.


2013 ◽  
Vol 859 ◽  
pp. 361-364 ◽  
Author(s):  
Jing Wang ◽  
Du Shu Huang ◽  
Wei Liu ◽  
Qing Shan Pan ◽  
Yong Min

Degradation properties of phenol using nano-TiO2 as photocatalyst in aqueous solution were investigated. The effect of annealing temperature and ionic modification on the degradation was studied. The results showed that, 500 °C annealed TiO2 was better than 700 °C annealed. Photocatalyst nano-TiO2 material doped with Fe3+ was prepared quickly by sol-gel process and was used as photocatalyst to degrade phenol solution of 100mg/L under UV irradiation for 3 hours. UV spectrophotometer testing was made and found that two peaks at 210 nm and 270 nm were significantly become low, indicating that the phenol has been degraded. The phenol degradation rate was 94.18%.


2020 ◽  
Vol 8 (2) ◽  
pp. 648-656
Author(s):  
Chunhao Tu ◽  
Jin Zhou ◽  
Lei Peng ◽  
Shuli Man ◽  
Long Ma

Three SAP (self-assembling peptide)-tagged fluorinases (FLAs) are successfully prepared. All three SAP-tagged FLAs bear enzymatic activity and they form nano-sized particles in aqueous solution. One of them displays improved enzyme activity, thermostability and reusability.


Blood ◽  
1977 ◽  
Vol 49 (2) ◽  
pp. 247-251 ◽  
Author(s):  
GJ Johnson ◽  
ME Kaplan ◽  
E Beutler

Abstract The enzymatic properties of a new glucose-6-phosphate dehydrogenase (G- 6-PD) variant (G-6-PD Long Prairie) were studied in a white patient with chronic nonspherocytic hemolysis. The red cells were found to have 2.3%-7.7% normal enzymatic activity. The mutant enzyme exhibited marked heat instability, an increased pH optimum, a moderately decreased Km for G-6-P, and increased utilization of 2-deoxyglucose-6-phosphate and deamino NADP. The Km for NADP and Ki for NADPH were both normal. G-6-PD Long Prairie is an interesting new G-6-PD variant that demonstrates that chronic hemolysis can be associated with modestly decreased G-6-PD activity despite normal sensitivity to inhibition by NADPH. Although increased sensitivity to inhibition by NADPH has been postulated to decrease intracellular enzyme activity, resulting in enhanced susceptibility to hemolysis in certain G-6-PD variants with only moderately decreased enzymatic activity, an alternative mechanism of hemolysis, possibly enzyme thermolability, exists in G-6-PD Long Prairie.


2011 ◽  
Vol 356-360 ◽  
pp. 25-30 ◽  
Author(s):  
Jin You Shen ◽  
Chao Zhang ◽  
Xiu Yun Sun ◽  
Jian Sheng Li ◽  
Lian Jun Wang

Recalcitrant and toxic organic pollutants such as aniline from numerous industrial wastewaters can not be efficiently removed using the conventional methods. This study reported a concept for mineralization of aniline in an anoxic reactor, where enhanced biodegradation of aniline were achieved under anoxic conditions. The results indicated that with the presence of nitrate, the degradation rate of aniline was greatly improved compared with the absence of nitrate. From the UV-vis adsorption spectra, COD analysis and denitrification performance analysis, it could be inferred that the cleavage of benzene ring of aniline occurred, aniline could be mineralization by microorganisms under the anoxic condition. However, aniline removal rate was lower compared to aerobic degradation process, and thus needs a significant improvement.


2011 ◽  
Vol 35 (4) ◽  
pp. 1167-1178 ◽  
Author(s):  
Karina Cenciani ◽  
Sueli dos Santos Freitas ◽  
Silvana Auxiliadora Missola Critter ◽  
Claudio Airoldi

Enzymatic activity is an important property for soil quality evaluation. Two sequences of experiments were carried out in order to evaluate the enzymatic activity in a soil (Rhodic Eutrudox) amended with cattle manure, earthworm casts, or sewage sludges from the municipalities of Barueri and Franca. The activity of commercial enzymes was measured by microcalorimetry in the same soil samples after sterilization. In the first experiment, the enzyme activities of cellulase, protease, and urease were determined in the soil samples during a three month period. In the second sequence of experiments, the thermal effect of the commercial enzymes cellulase, protease, and urease on sterilized soil samples under the same tretaments was monitored for a period of 46 days. The experimental design was randomized and arranged as factorial scheme in five treatments x seven samplings with five replications. The treatment effects were statistically evaluated by one-way analysis of variance. Tukey´s test was used to compare means at p < 0.05. The presence of different sources of organic residues increased the enzymatic activity in the sampling period. Cattle manure induced the highest enzymatic activity, followed by municipal sewage sludge, whereas earthworm casts induced the lowest activity, but differed from control treatment. The thermal effect on the enzyme activity of commercial cellulase, protease, and urease showed a variety of time peaks. These values probably oscillated due to soil physical-chemical factors affecting the enzyme activity on the residues.


1998 ◽  
Vol 64 (3) ◽  
pp. 1018-1023 ◽  
Author(s):  
I. Tryland ◽  
L. Fiksdal

ABSTRACT Bacteria which were β-d-galactosidase and β-d-glucuronidase positive or expressed only one of these enzymes were isolated from environmental water samples. The enzymatic activity of these bacteria was measured in 25-min assays by using the fluorogenic substrates 4-methylumbelliferyl-β-d-galactoside and 4-methylumbelliferyl-β-d-glucuronide. The enzyme activity, enzyme induction, and enzyme temperature characteristics of target and nontarget bacteria in assays aimed at detecting coliform bacteria and Escherichia coli were investigated. The potential interference of false-positive bacteria was evaluated. Several of the β-d-galactosidase-positive nontarget bacteria but none of the β-d-glucuronidase-positive nontarget bacteria contained unstable enzyme at 44.5°C. The activity of target bacteria was highly inducible. Nontarget bacteria were induced much less or were not induced by the inducers used. The results revealed large variations in the enzyme levels of different β-d-galactosidase- and β-d-glucuronidase-positive bacteria. The induced and noninduced β-d-glucuronidase activities ofBacillus spp. and Aerococcus viridans were approximately the same as the activities of induced E. coli. Except for some isolates identified asAeromonas spp., all of the induced and noninduced β-d-galactosidase-positive, noncoliform isolates exhibited at least 2 log units less mean β-d-galactosidase activity than induced E. coli. The noncoliform bacteria must be present in correspondingly higher concentrations than those of target bacteria to interfere in the rapid assay for detection of coliform bacteria.


1977 ◽  
Vol 23 (8) ◽  
pp. 1386-1388 ◽  
Author(s):  
R Wei ◽  
S Riebe

Abstract We labeled IgG with phospholipase C, using 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide. Enzymaticactivity of the resulting conjugate was inhibited when it was complexed with human IgG, but rabbit or goat IgG was not effective in suppressing the enzyme activity. Normal erythrocytes were used as substrate for the enzyme, enzymatic activity being assessed by measuring the release of hemoglobin. The substrates for phospholipase C are phospholipids, which are major components of the erythrocyte membranes. Hence, the phospholipids in the membranes are viewed as being "immobilized." Perhpas such immobilization of substrate may be a requisite to the inhibition phenomenon.


2014 ◽  
Vol 395 (4) ◽  
pp. 401-412 ◽  
Author(s):  
Michael Korbus ◽  
Ganesh Balasubramanian ◽  
Florian Müller-Plathe ◽  
Harald Kolmar ◽  
Franz-Josef Meyer-Almes

Abstract The control of enzymes by use of an external stimulus such as light enables the temporal and spatial regulation of defined chemical reactions in a highly precise manner. In this work we investigated and characterized the reversible photocontrol of a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes strain FB188, which holds great potential to control deacetylation reactions of a broad spectrum of substrates in biotechnological and biomedical applications. Several HDAH variants with a single surface accessible cysteine close to the active site were developed and covalently modified by a monofunctional azobenzene-based photoswitch [4-phenylazomaleinanil (4-PAM)]. The enzymatic activity of three HDAH variants (M30C, S20C and M150C) were shown to be controlled by light. The thermal cis-to-trans relaxation of azobenzene conjugated to HDAH was up to 50-fold retarded compared to unbound 4-PAM allowing light pulse switching rather than continuing irradiation to maintain the thermodynamically less stable cis-state of covalently attached 4-PAM.


Sign in / Sign up

Export Citation Format

Share Document