A Study on Uniform Performance of Carbon - Carbon Matrix Composites with Ceramic Reinforcements

2015 ◽  
Vol 766-767 ◽  
pp. 63-69
Author(s):  
M. Manikandan ◽  
Surendran

Carbon - Carbon (CC) area unit extremely used as a neighborhood of various coming up with applications attributable to its weight lightweight property. Yet, this area unit got to oppose wear and acquire to be feeble for tribological applications. This marvel raises the need for Carbon - Carbon Matrix Composites (CCMCs) for elite tribological applications. For the foremost half, the fortifications area unit intercalary with the CC to structure CCMCs through fluid throwing system. The impact of fortifications in CCMCs specimens area unit tried to find the modification in mechanical and tribological properties. The mechanical properties like hardness and snap area unit tried. The wear and tear element enclosed within the modification of tribological property is focused on utilizing the minute photos. The implications of various fortifications in CCMCs area unit solid and therefore the unmatched support is distinguished for tribological applications

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Guo ◽  
Peiling Ke ◽  
Aiying Wang

W-incorporated diamond-like carbon (W-C:H) films were fabricated by a hybrid beams system consisting of a DC magnetron sputtering and a linear ion source. The W concentration (1.08~31.74 at.%) in the film was controlled by varying the sputtering current. The cross-sectional topography, composition, and microstructure of the W-C:H films were investigated by SEM, XPS, TEM, and Raman spectroscopy. The mechanical and tribological properties of the films as a function of W concentration were evaluated by a stress-tester, nanoindentation, and ball-on-disk tribometer, respectively. The results showed that films mainly exhibited the feature of amorphous carbon when W concentration of the films was less than 4.38 at.%, where the incorporated W atoms would be bonded with C atoms and resulted in the formation ofWC1-xnanoparticles. The W-C:H film with 4.38 at.% W concentration showed a minimum value of residual compressive stress, a higher hardness, and better tribological properties. Beyond this W concentration range, both the residual stress and mechanical properties were deteriorated due to the growth of tungsten carbide nanoparticles in the carbon matrix.


2014 ◽  
Vol 59 (2) ◽  
pp. 707-711 ◽  
Author(s):  
M. Łągiewka

Abstract The paper constitutes the culmination of the foregoing investigations concerning the influence of short carbon fibre on the enhancement of AlMg10 alloy properties. The presented work brings forward the results of examinations of mechanical and tribological properties of metal matrix composites (MMCs) based on this alloy. Composites were produced by two methods: either by gravity casting or by squeeze casting in semi-solid state of a composite suspension previously obtained through mixing of its components. The volume fraction of the reinforcing phase varied and took the value of 5, or 10, or finally 15 vol. %. Specimens cut out of the experimental castings were examined with respect both to their mechanical properties, i.e. the tensile strength and unit elongation, and to their tribological behaviour. A series of examinations of the mechanical properties proved a slight increase in tensile strength and a minor decrease in unit elongation of the examined composite materials both for gravity cast and squeeze cast specimens, as compared with the properties of pure matrix alloy. The introduction of short carbon fibre into the matrix alloy resulted also in the increased abrasive wear resistance of the examined composites in comparison to the non-reinforced matrix.


2011 ◽  
Vol 295-297 ◽  
pp. 1573-1577 ◽  
Author(s):  
Gao Liang Zhang ◽  
Qing Xiang Zhao ◽  
Min Ying Liu ◽  
Peng Fu ◽  
Yi Bo Yu ◽  
...  

Brown Corundum Ash(BCA) was used to modify nylon 1212(PA1212), which is produced during the production of electric fused brown corundum alumina and will causes serous environmental pollution if it is not recycled. In order to improve the tribological property of PA1212 composites, Graphite, MoS2 and PTFE were used. The composites were prepared by a twin-screw extruder through melt intercalation. The mechanical properties and the wear resistance of the PA1212/Brown Corundum Ash/graphite/MoS2/PTFE composite were studied. The shearing area of composite and the worn surfaces were examined by scanning electric microscope (SEM).


2016 ◽  
Vol 61 (1) ◽  
pp. 323-328 ◽  
Author(s):  
J. Wieczorek ◽  
B. Oleksiak ◽  
J. Łabaj ◽  
B. Węcki ◽  
M. Mańka

Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs) were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting) technology, followed by plastic work (the KOBO method). The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.


2021 ◽  
Vol 8 (1) ◽  
pp. 1923382
Author(s):  
Rifky Ismail ◽  
Dewi Paras Utami ◽  
Mochamad Arid Irfai ◽  
J. Jamari ◽  
A.P. Bayuseno

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose The mechanical and tribological properties of polymers and polymer composites vary with different environmental conditions. This paper aims to review the influence of humidity/water conditions on various polymers and polymer composites' mechanical properties and tribological behaviors. Design/methodology/approach The influence of humidity and water absorption on mechanical and tribological properties of various polymers, fillers and composites has been discussed in this paper. Tensile strength, modulus, yield strength, impact strength, COF and wear rates of polymer composites are compared for different environmental conditions. The interaction between the water molecules and hydrophobic polymers is also represented. Findings Pure polymer matrices show somewhat mixed behavior in humid environments. Absorbed moisture generally plasticizes the epoxies and polyamides and lowers the tensile strength, yield strength and modulus. Wear rates of PVC generally decrease in humid environments, while for polyamides, it increases. Fillers like graphite and boron-based compounds exhibit low COF, while MoS2 particulate fillers exhibit higher COF at high humidity and water conditions. The mechanical properties of fiber-reinforced polymer composites tend to decrease as the rate of humidity increases while the wear rates of fiber-reinforced polymer composites show somewhat mixed behavior. Particulate fillers like metals and advanced ceramics reinforced polymer composites exhibit low COF and wear rates as the rate of humidity increases. Originality/value The mechanical and tribological properties of polymers and polymer composites vary with the humidity value present in the environment. In dry conditions, wear loss is determined by the hardness of the contacting surfaces, which may not effectively work for high humid environments. The tribological performance of composite constituents, i.e. matrix and fillers in humid environments, defines the overall performance of polymer composite in said environments.


2010 ◽  
Vol 25 (5) ◽  
pp. 880-889 ◽  
Author(s):  
Zhi-Hui Xu ◽  
Young-Bae Park ◽  
Xiaodong Li

Ion implantation has been widely used to improve the mechanical and tribological properties of single crystalline silicon, an essential material for the semiconductor industry. In this study, the effects of four different ion implantations, Ar, C, N, and Ne ions, on the mechanical and tribological properties of single crystal Si were investigated at both the nanoscale and the microscale. Nanoindentation and microindentation were used to measure the mechanical properties and fracture toughness of ion-implanted Si. Nano and micro scratch and wear tests were performed to study the tribological behaviors of different ion-implanted Si. The relationship between the mechanical properties and tribological behavior and the damage mechanism of scratch and wear were also discussed.


Sign in / Sign up

Export Citation Format

Share Document