scholarly journals Incorporated W Roles on Microstructure and Properties of W-C:H Films by a Hybrid Linear Ion Beam Systems

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Guo ◽  
Peiling Ke ◽  
Aiying Wang

W-incorporated diamond-like carbon (W-C:H) films were fabricated by a hybrid beams system consisting of a DC magnetron sputtering and a linear ion source. The W concentration (1.08~31.74 at.%) in the film was controlled by varying the sputtering current. The cross-sectional topography, composition, and microstructure of the W-C:H films were investigated by SEM, XPS, TEM, and Raman spectroscopy. The mechanical and tribological properties of the films as a function of W concentration were evaluated by a stress-tester, nanoindentation, and ball-on-disk tribometer, respectively. The results showed that films mainly exhibited the feature of amorphous carbon when W concentration of the films was less than 4.38 at.%, where the incorporated W atoms would be bonded with C atoms and resulted in the formation ofWC1-xnanoparticles. The W-C:H film with 4.38 at.% W concentration showed a minimum value of residual compressive stress, a higher hardness, and better tribological properties. Beyond this W concentration range, both the residual stress and mechanical properties were deteriorated due to the growth of tungsten carbide nanoparticles in the carbon matrix.

2016 ◽  
Vol 33 (6) ◽  
pp. 769-776 ◽  
Author(s):  
Y.-R. Jeng ◽  
S. Islam ◽  
K-T. Wu ◽  
A. Erdemir ◽  
O. Eryilmaz

AbstractHydrogenated diamond like Carbon (H-DLC) is a promising lubricious coating that attracted a great deal of interest in recent years mainly because of its outstanding tribological properties. In this study, the nano-mechanical and -tribological properties of a range of H-DLC films were investigated. Specifically, four kinds of H-DLC coatings were produced on Si substrates in pure acetylene, pure methane, 25% methane + 75% hydrogen, 50% methane + 50% hydrogen discharge plasmas using a plasma enhanced chemical vapour deposition (PECVD) system. Nano indentation was performed to measure the mechanical properties such as hardness and young's modulus and nanoscartching was performed to investigate the frictional behavior and wear mechanism of the H-DLC samples in open air. Moreover, Vickers indentation method was utilized to assess the fracture toughness of the samples. The results revealed that there is a strong correlation between the mechanical properties (hardness, young's modulus, fracture toughness) and the friction coefficient of DLC coatings and the source gas chemistry. Lower hydrogen to carbon ratio in source gas leads to higher hardness, young's modulus, fracture toughness and lower friction coefficient. Furthermore, lower wear volume of the coated materials was observed when the friction coefficient was lower. It was also confirmed that lower hydrogen content of the DLC coating leads to higher wear resistance under nanoscratch conditions.


2012 ◽  
Vol 532-533 ◽  
pp. 131-134
Author(s):  
Xiao Ling ◽  
Shu Rong Yu ◽  
Jun Yan Zhang

Ni-doped diamond-like carbon coatings were deposited on silicon wafer by magnetron sputtering. The Ni content was controlled by changing the Ni target current. The Ni content, mechanical properties and tribological properties of the coatings were systematically studied by Raman spectroscopy, nano-indentation and ball-on-disc tester. The highest hardness and internal stress are obtained at the Ni content of 2.3%. The friction coefficient and wear rate lower with the decreased of the Ni content, which may be responsible for the excellent tribological properties.


2021 ◽  
Author(s):  
V. Sakthi Murugan ◽  
S. Madhu

Abstract The Silicon (Si) contained diamond like carbon (DLC) nanocomposite were prepared by using thermal chemical vapour deposition (CVD) technique by varying the acetylene (C2H2) flowrates. The scanning electron microscope (SEM) results showed a smoother surface of nanocomposite at low C2H2 flowrates. The atomic force microscope (AFM) reveals the increase of particle size and surface roughness of the composite with respect to the C2H2 flowrates. The mechanical properties were evaluated using the nanoindentation and it is observed that the hardness (H) and young’s modulus (E) of the nanocomposite increases with increase of the C2H2 flow rate. The internal stress (𝝈) was computed by using Stoney’s equation and it is noticed that due to the incorporation of Si the residual stress significantly decreased. The tribological properties of the nanocomposite were analysed by computing the H/E, H3/E2, plasticity index (PI) and elasticity index (EI). The results showed that the Si incorporated nanocomposite (Si-DLC) has an excellent tribological properties.


2015 ◽  
Vol 766-767 ◽  
pp. 63-69
Author(s):  
M. Manikandan ◽  
Surendran

Carbon - Carbon (CC) area unit extremely used as a neighborhood of various coming up with applications attributable to its weight lightweight property. Yet, this area unit got to oppose wear and acquire to be feeble for tribological applications. This marvel raises the need for Carbon - Carbon Matrix Composites (CCMCs) for elite tribological applications. For the foremost half, the fortifications area unit intercalary with the CC to structure CCMCs through fluid throwing system. The impact of fortifications in CCMCs specimens area unit tried to find the modification in mechanical and tribological properties. The mechanical properties like hardness and snap area unit tried. The wear and tear element enclosed within the modification of tribological property is focused on utilizing the minute photos. The implications of various fortifications in CCMCs area unit solid and therefore the unmatched support is distinguished for tribological applications


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose The mechanical and tribological properties of polymers and polymer composites vary with different environmental conditions. This paper aims to review the influence of humidity/water conditions on various polymers and polymer composites' mechanical properties and tribological behaviors. Design/methodology/approach The influence of humidity and water absorption on mechanical and tribological properties of various polymers, fillers and composites has been discussed in this paper. Tensile strength, modulus, yield strength, impact strength, COF and wear rates of polymer composites are compared for different environmental conditions. The interaction between the water molecules and hydrophobic polymers is also represented. Findings Pure polymer matrices show somewhat mixed behavior in humid environments. Absorbed moisture generally plasticizes the epoxies and polyamides and lowers the tensile strength, yield strength and modulus. Wear rates of PVC generally decrease in humid environments, while for polyamides, it increases. Fillers like graphite and boron-based compounds exhibit low COF, while MoS2 particulate fillers exhibit higher COF at high humidity and water conditions. The mechanical properties of fiber-reinforced polymer composites tend to decrease as the rate of humidity increases while the wear rates of fiber-reinforced polymer composites show somewhat mixed behavior. Particulate fillers like metals and advanced ceramics reinforced polymer composites exhibit low COF and wear rates as the rate of humidity increases. Originality/value The mechanical and tribological properties of polymers and polymer composites vary with the humidity value present in the environment. In dry conditions, wear loss is determined by the hardness of the contacting surfaces, which may not effectively work for high humid environments. The tribological performance of composite constituents, i.e. matrix and fillers in humid environments, defines the overall performance of polymer composite in said environments.


2010 ◽  
Vol 25 (5) ◽  
pp. 880-889 ◽  
Author(s):  
Zhi-Hui Xu ◽  
Young-Bae Park ◽  
Xiaodong Li

Ion implantation has been widely used to improve the mechanical and tribological properties of single crystalline silicon, an essential material for the semiconductor industry. In this study, the effects of four different ion implantations, Ar, C, N, and Ne ions, on the mechanical and tribological properties of single crystal Si were investigated at both the nanoscale and the microscale. Nanoindentation and microindentation were used to measure the mechanical properties and fracture toughness of ion-implanted Si. Nano and micro scratch and wear tests were performed to study the tribological behaviors of different ion-implanted Si. The relationship between the mechanical properties and tribological behavior and the damage mechanism of scratch and wear were also discussed.


2018 ◽  
Vol 31 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Yingshuang Shang ◽  
Xian Wu ◽  
Yifan Liu ◽  
Zilong Jiang ◽  
Zhaoyang Wang ◽  
...  

The high strength of multiwalled carbon nanotubes (MWCNTs) indicates promising properties for industry applications to reduce frictional coefficient and improve mechanical properties, yet few researches have referred to its structural morphology on the thermal, mechanical, and tribological properties of composites. In this work, three different lengths of MWCNTs were used to prepare polyether ether ketone (PEEK) composites and investigate the effect of structural morphology of MWCNTs on the thermal, mechanical, and tribological properties of composites. Different lengths of MWCNTs endowed PEEK composites with different thermal, mechanical, and tribological properties. On thermal and mechanical properties, the incorporation of 10–30 μm length of MWCNTs increased more the effectiveness on the crystallization rate, showing a higher crystallization temperature and the best mechanical properties of the PEEK composites. On tribological properties, approximately 50 μm MWCNTs can effectively decrease adhesive wear, which is a benefit of forming a thin transfer film, thereby effectively decreasing the coefficient of friction and improving the wear resistance.


Sign in / Sign up

Export Citation Format

Share Document