Green Composites Based on Recycled Plastic Reinforced Local Sisal Fibers

2015 ◽  
Vol 776 ◽  
pp. 264-270 ◽  
Author(s):  
N.P.G. Suardana ◽  
Ni Made Suaniti ◽  
I. Putu Lokantara

Recycled polypropylene (PP) and sisal fiber, which are available in abundant ammount, can be used for producing a composite, a new material that reduce production costs and environmental damage. The new materials will be used for manufacturing floor tiles that are environmentally friendly, light but still technically qualified, and are expected to replace the ceramic tiles that are relatively heavy. However, the drawbacks in the application, natural fiber is a combustible material and it absorbs water easily (hydrophilic). To overcome these obstacles then a study on fiber chemical treatment was conducted. The purpose of this study is to determine the effect of chemical treatments on sisal fibers for fire resistance capability, the moisture resistance and tensile properties of the composites. So these composite materials can replace ceramic tile that is used for houses, hotels, ships and so on. In this research, sisal fibers with length of 10 mm were treated by NaOH and followed by Vulcan AF21 (Vulcan) of 5%, 10% and 20% for 2-hours for fire resistance, and other treatment with Acrylic acid (AA) of 1%, 5% and 10% for 1 hour at 50°C for moisture resistance. Fiber material that has been chemically treated is mixed with recycled PP. Test specimens were made in hot pressed. Fire resistance testing was conducted based on ASTM D635 standards, water absorption testing (ASTM D570), and tensile testing. The result shows that the higher the percentage of Vulcan treatment on sisal fiber is of 5%, 10% and 20%, the linear burning rate, the percentage of weight loss and weight loss rate of sisal fiber polypropylene composites decreases which means the composite is more resistant to fire. In general, the increase percentage of Vulcan on treatment sisal fibers shows a decrease in tensile strength and modulus of elasticity but a slight increase tensile strain of composite. Fiber treated with acrylic acid (AA) experienced a reduction of water absorption compared to the untreated of fiber composites.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Idowu David Ibrahim ◽  
Tamba Jamiru ◽  
Emmanuel Rotimi Sadiku ◽  
Williams Kehinde Kupolati ◽  
Stephen Chinenyeze Agwuncha

The use of plant fibers, polymer, and nanoparticles for composite has gained global attention, especially in the packaging, automobile, aviation, building, and construction industries. Nanocomposites materials are currently in use as a replacement for traditional materials due to their superior properties, such as high strength-to-weight ratio, cost effectiveness, and environmental friendliness. Sisal fiber (SF) was treated with 5% NaOH for 2 hours at 70°C. A mixed blend of sisal fiber and recycled polypropylene (rPP) was produced at four different fiber loadings: 10, 20, 30, and 40 wt.%, while nanoclay was added at 1, 3, and 5 wt.%. Maleic anhydride grafted polypropylene (MAPP) was used as the compatibilizer for all composites prepared except the untreated sisal fibers. The characterization results showed that the fiber treatment, addition of MAPP, and nanoclay improved the mechanical properties and thermal stability and reduced water absorption of the SF/rPP nanocomposites. The tensile strength, tensile modulus, and impact strength increased by 32.80, 37.62, and 5.48%, respectively, when compared to the untreated SF/rPP composites. Water absorption was reduced due to the treatment of fiber and the incorporation of MAPP and nanoclay.


2017 ◽  
Vol 12 (2) ◽  
pp. 155892501701200 ◽  
Author(s):  
Paulo R. L. Lima ◽  
Heni Mirna Santos ◽  
Geany Peruch Camilloto ◽  
Renato Souza Cruz

Sisal fiber, available in various semi-arid regions around the world, is the most studied natural fiber for the reinforcement of polymeric and cement-based composites. However, to improve the fiber–matrix interaction and to reduce the hydrophilicity of the fiber, it is necessary to establish surface treatments that employ sustainable materials, unlike conventional surface treatments. In this work, sisal fibers were coated separately with cellulose acetate, hydrophobic starch, and cassava starch biopolymers in order to verify the possibility of reducing the water absorption capacity of the fiber by the use of a biodegradable resin. A combination of Fourier transform infrared spectroscopy, scanning electron microscopy, and water absorption and tensile tests was used to investigate the effects of the surface treatments on the sisal fiber properties. Pullout tests of sisal fibers with embedded lengths of 20 mm and 40 mm were performed to determine the influence of the treatments on the bond stress with cement mortar. Composites with 4 vol % short fiber were produced and tested for flexion. The study results indicated that all treatments reduced the mechanical properties of the fiber; however, the layer of the cellulose acetate biopolymer film formed on the fiber surface was effective in reducing the fiber hydrophilicity. Experimental tests on the composites revealed that the cellulose acetate treatment reduced the bond stress and, to a lesser degree, the flexural toughness of the composite, despite the increase in flexural strength.


Author(s):  
Srinivasa Rao Naraganti

Sisal has been reported as one of the promising fibers for cement composite applications. The durability of sisal fiber reinforced concrete (SFRC) and steel sisal fiber reinforced concrete (SSFRC) have not been reported. Water absorption, rapid chloride permeability, and acid attack tests are conducted on fibrous cement composites. Steel, polypropylene, and sisal fibers with a total volume of 0.50%, 1.00%, 1.25%, and 1.50% were used. Sisal at a content of 1.50% in SFRC increases the water absorption by 76%, but it is reduced to 30% for SSFRC with 0.2% of sisal content. SFRC and SSFRC show the increased permeability of 1.69% and 2.09% respectively. SFRC experiences the highest volume loss of 6.52%. SSFRC illustrates the resistance to the mass loss and compressive strength loss. In conclusion, untreated sisal in any form is found to be not advantageous for durable fibrous concrete structures.


2018 ◽  
Vol 20 ◽  
pp. 143-154
Author(s):  
D. Gomes dos Santos ◽  
A.G. Barbosa de Lima ◽  
P. de Sousa Costa ◽  
E. Santana de Lima ◽  
G. Moreira ◽  
...  

In this work was conducted a theoretical and experimental study of water absorption in polyester matrix composites reinforced with sisal fiber at temperatures of 25, 50 and 70°C. A fiber content 44.6% sisal fibers, and 55.4% polyester matrix were used in the manufacture of the polymer composite. The dimensions of the composite were 20x20x3mm3and 20x20x6mm3. Water absorption tests were conducted by immersion of the samples in a distilled water bath and the water uptake calculated by weight difference of the samples in the dry and wetted condition at different elapsed time. A three-dimensional mathematical model was developed to predict mass transfer during the water absorption inside the parallelepiped solid. Results of water absorption kinetic and moisture content distribution inside the composites showed the more favorable areas which presents delamination problems due the weakness of the fiber-matrix interface and consequently, reduction in the mechanical properties. It was found that the high water bath temperatures accelerate the absorption process and that the water absorption of the sisal reinforced polymer composite with 3 mm of thickness was faster than the with 6 mm of thickness.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 44
Author(s):  
Daniel Darnikowski ◽  
Magdalena Mieloszyk

Lithium-ion batteries (LIBs) have many advantages (e.g., high voltage and long-life cycle) in comparison to other energy storage technologies (e.g., lead acid), resulting in their applicability in a wide variety of structures. Simultaneously, the thermal stability of LIBs is relatively poor and can be damaged by exposure to fire. This paper presents an investigation into a fire resistance safety test for LIBs and the use of thermal sensors to evaluate exposure conditions and estimate the temperatures to which cells are subjected. Temperature distribution data and statistical analysis show significant differences of over 200 ∘C, indicating the stochastic nature of the heating curve despite following the testing procedure requirements. We concluded that the current testing procedure is inadequate for the reliable testing of LIBs, leaving an alarming loophole in the fire safety evaluation. The observed instability is mostly related to wind speed and direction, and fire source size.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2436
Author(s):  
Abubakar Sadiq Mohammed ◽  
Martina Meincken

Low-cost wood–plastic composites (WPCs) were developed from invasive trees and recycled low-density polyethylene. The aim was to produce affordable building materials for low-cost social housing in South Africa. Both raw materials are regarded as waste materials, and the subsequent product development adds value to the resources, while simultaneously reducing the waste stream. The production costs were minimised by utilising the entire biomass of Acacia saligna salvaged from clearing operations without any prior processing, and low-grade recycled low-density polyethylene to make WPCs without any additives. Different biomass/plastic ratios, particle sizes, and press settings were evaluated to determine the optimum processing parameters to obtain WPCs with adequate properties. The water absorption, dimensional stability, modulus of rupture, modulus of elasticity, tensile strength, and tensile moduli were improved at longer press times and higher temperatures for all blending ratios. This has been attributed to the crystallisation of the lignocellulose and thermally induced cross-linking in the polyethylene. An increased biomass ratio and particle size were positively correlated with water absorption and thickness swelling and inversely related with MOR, tensile strength, and density due to an incomplete encapsulation of the biomass by the plastic matrix. This study demonstrates the feasibility of utilising low-grade recycled polyethylene and the whole-tree biomass of A. saligna, without the need for pre-processing and the addition of expensive modifiers, to produce WPCs with properties that satisfy the minimum requirements for interior cladding or ceiling material.


2018 ◽  
Vol 135 (26) ◽  
pp. 46405 ◽  
Author(s):  
Juan Chen ◽  
Yu Zou ◽  
Heyi Ge ◽  
Zedong Cui ◽  
Shanshan Liu

2011 ◽  
Vol 243-249 ◽  
pp. 494-498
Author(s):  
Hui Ming Bao

By means of the tests on the mechanics performance of the reinforcing concrete mixed with sisal fibers or rubber powder of certain content are investigated. The compressive strength, tensile strength and flexural strength, etc. are compared. The test indicates that when the test condition is same, the compressive strength, tensile strength and flexural strength of the sisal fibers concrete are better than those of the rubber powder’s. The sisal fiber concrete is environment friendly than the rubber powder concrete. And it has widely value of spread and utilization.


2021 ◽  
Vol 91 (3) ◽  
pp. 554-558
Author(s):  
I. M. Borisov ◽  
S. T. Rashidova ◽  
R. S. Luksha

Sign in / Sign up

Export Citation Format

Share Document