Processing of Sustainable Polymer with Thermoplastics by Injection Moulding

2015 ◽  
Vol 799-800 ◽  
pp. 57-61
Author(s):  
Anika Zafiah Mohd Rus ◽  
Nurul Syamimi M. Salim ◽  
M.F. Idaris

Among different natural oils, recycling of waste vegetable oils from palm oil is widely explored for polyol synthesis to prevent pollution of waterways and clogging private and municipal drain systems, restaurants and other food preparation. The polyol is solidifying using cross linker and known as Sustainable Polymer (SP). SP is compounded with High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE) by melt-mixing using an injection molding machine. The effect of polymer compounding ratio on the mechanical properties was studied by tensile test. The result indicated that increasing the SP content in LDPE or HDPE was responsible to the reduction of tensile strength and elongation at break of the samples, if compared to pure thermoplastic LDPE and HDPE. This can be verified by increased in SP amount which gave a significant increase in density of the polymer compounds. Morphological of tensile specimens’ surface fracture is revealed the homogenous characteristic with high compatibility properties of sustainable polymer with its compounded polymers.

2015 ◽  
Vol 77 (32) ◽  
Author(s):  
Nurul Syamimi M. Salim ◽  
Anika Zafiah M. Rus

Green polymer from waste cooking oils is successfully converted into high functionality of hydroxylated green monomer. The green monomer was used crosslinker and known as Green Polymer. Green Polymer is compounded with High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE). These wastes to wealth green polymer are successfully compounded with HDPE and LDPE by melt-mixing used an injection molding machine known as Pro-GreP. The effect of different ratio of compounding materials on the mechanical properties of Pro-GreP was studied by tensile test. Morphological of surface fracture with magnification 100x on Pro-GreP is revealed the homogenous characteristic with high compatibility properties. Finally, the presence of biopolymer provide biodegradable properties, but it also improves the mechanical properties. It can be showed that the tensile strength and tensile strain is decreased than the neat thermoplastic and they were found to decreased with the increasing of biopolymer compounds. However, LDPE are lower in tensile strength and tensile strain than HDPE.


2020 ◽  
Vol 10 ◽  
pp. 48-55
Author(s):  
H. V. Allakhverdiyeva ◽  
◽  
N. T. Kakhramanov ◽  
I. I. Ismayilov ◽  
◽  
...  

The paper presents the results of a study of the effect of aluminum content on the physic-mechanical properties of composites based on high density polyethylene and low density polyethylene. The properties of metal-filled composites, such as ultimate tensile stress, elongation at break, elastic module, melt flow rate, and heat resistance, were studied. According to the data obtained, the loading of aluminum into the composition of low density polyethylene contributes to a monotonic increase in the ultimate tensile stress and the elastic module. When aluminum is loading into the composition of high density polyethylene, on the contrary, a natural decrease in the ultimate tensile stress and elongation at break of the composites is observed. It is shown that when using a compatibilizer, which is polyethylene modified with maleic anhydride, a significant increase in the ultimate tensile stress of high-density polyethylene composites is observed. A schematic representation of the structure of composites with an interpretation of the probable mechanism of hardening of the material in the presence of a compatibilizer is given. It is shown that the crystallinity of the initial polyethylene has a significant effect on the hardening effect of composites. Electron microscopic micrographs of the structure of a filled composite without and with compatibilizer are given. A comparative assessment shows that in the presence of a compatibilizer, aluminum particles are in the bulk of the polymer matrix, i.e. are not in an isolated state. It is assumed that HDPE macrochains free of maleic anhydride (MA) are involved in the formation of crystalline formations, and small sections of macrosegments containing polar groups of MA are concentrated mainly in amorphous regions and in defects in crystalline structures in the form of passage chains. The concentration of PEMA macrosegments containing MA in the narrow amorphous space of HDPE favorably affects the increase in the adhesive forces of interaction on the surface of aluminum particles, which affects the preservation of the ultimate tensile stress at a relatively high level over a wide range of aluminum concentrations.


2015 ◽  
Vol 754-755 ◽  
pp. 201-204
Author(s):  
Ragunathan Santiagoo ◽  
Sam Sung Ting ◽  
Azlinda Abdul Ghani ◽  
Hanafi Ismail ◽  
Awiezan Mislan

The compatibilizer effect of ENR-50 on the tensile properties of high density polyethylene (HDPE)/recycled acrylonitrile butadiene rubber (NBRr)/banana skin powder (BSP)/ composites has been studies. HDPE/NBRr/BSP composites were prepared by melt mixing technique using twin-screw at 180 °C for 9 minutes at rotor speed 50 rpm. The six different composites studied were 100/0/5, 80/20/5, 70/30/5, 60/40/5, 50/50/5, and 40/60/5. As for compatibilized composite a fix 5 wt% of ENR-50 was evaluated. The specimens were analysed for tensile strength and elongation at break (Eb). The results showed that tensile strength and the elongation at break were decreases with the increasing of NBRr loading. However for ENR-50 compatibilized composites, higher tensile strength and elongation at break was recorded. The ENR-50 was found to be an excellent compatibilizer for HDPE/NBRr/BSP composites.


2015 ◽  
Vol 30 (6) ◽  
pp. 855-884 ◽  
Author(s):  
AK Sudari ◽  
AA Shamsuri ◽  
ES Zainudin ◽  
PM Tahir

Three types of surfactants, specifically cationic, anionic, and nonionic, at different weight percentages were added into high-density polyethylene/low-density polyethylene/cellulose (HDPE/LDPE/cellulose) biocomposites via melt mixing. The cationic and anionic surfactants which are hexadecyltrimethylammonium bromide (HTAB) and sodium stearate (SS), respectively, were added from 4 to 20 wt%, whereas the nonionic surfactant which is sorbitan monostearate (SM) was added from 1 to 5 wt%. The mechanical testing results exhibited that the addition of HTAB increased tensile strength and tensile modulus, while SS deteriorated mechanical properties, while SM increased impact strength and tensile extension of the biocomposites. Based on the mechanical properties results, optimum weight percentages of HTAB and SM were 12 wt% and 4 wt%, respectively. The scanning electron microscopic micrographs displayed that the amount of cellulose fillers pullout decreased with the addition of HTAB, followed by SM, but it increased with SS. Fourier transform infrared spectra, X-ray diffractometer patterns, thermogravimetric analysis results, and differential scanning calorimetry thermograms have confirmed the presence of physical interactions only with the addition of HTAB and SM. Based on the results, compatibilizing effect was found in HTAB, whereas SM has not showed compatibilizing effect but instead plasticizing effect. However, neither compatibilizing nor plasticizing effect was exhibited by SS.


2020 ◽  
Vol 869 ◽  
pp. 76-81
Author(s):  
Vu Minh Trong ◽  
Bui Dinh Hoan

The fly ash from Pha Lai power plant was modified by vinyltrimetoxysilan (VTMS). The polymer composites based on low-density polyethylene (LDPE), ethylene vinyl acetate copolymer (EVA) and fly ash (FA) without and with vinyltrimetoxysilan (VTMS) modification were prepared by melt mixing in a Haake Rheomixer. The tensile strength and elongation at break of the LDPE/EVA/VFA composites were also higher than those of the LDPE/EVA/FA composites. The FESEM images proved that FA-VTMS particles disperse more regularly in the polymer matrix in comparison with FA without VTMS modification. In addition, the surface modification of the FA reduced the size of agglomeration of FA particles.


Author(s):  
Khayala V. Allakhverdieva

The paper presents the results of a study of the effect of copper concentration on the physicomechanical properties of composites based on high density polyethylene and low density polyethylene. The properties of metal-filled composites, such as ultimate tensile stress, elongation at break, elastic module, melt flow rate, and heat resistance, were studied. Loading of copper into the composition of low density polyethylene contributes to a monotonic increase in the ultimate tensile stress and the elastic module. When copper is loading into the composition of high density polyethylene, on the contrary, a natural decrease in the ultimate tensile stress and elongation at break of the composites is observed. It is shown that when using a compatibilizer, which is polyethylene modified with maleic anhydride, a significant increase in the ultimate tensile stress of high and low density polyethylene composites is observed. A schematic representation of the structure of composites with an interpretation of the probable mechanism of hardening of the material in the presence of a compatibilizer is given. It is shown that the crystallinity of the initial polyethylene has a significant effect on the hardening effect of composites. It is assumed that polyethylene of high density macrochains free of maleic anhydride are involved in the formation of crystalline formations, and small sections of macrosegments containing polar groups are concentrated mainly in amorphous regions and in defects in crystalline structures in the form of passage chains. The concentration of copolymer of polyethylene with maleic anhydride macrosegments in the narrow amorphous space of polyethylene of high density favorably affects the increase in the adhesive forces of interaction on the surface of copper particles, which affects the preservation of the ultimate tensile stress at a relatively high level over a wide range of copper concentrations.


2015 ◽  
Vol 789-790 ◽  
pp. 85-89
Author(s):  
Anika Zafiah Mohd Rus ◽  
Nurul Syamimi M. Salim ◽  
N. Haiza Sapiee

Moving to a more sustainable and healthy future, the world has decided to invest on researches to make good use of waste vegetable oil rather than letting them clog the drains and hence, polluting the environment. One of the useful projects which uses these waste cooking oil is to synthesize polyols. Solidifying the polyols using cross linker produces a Sustainable Polymer (SP). These SP are compounded with the High-Density Polyethylene (HDPE) by melt-mixing using injection molding machine. Injection molding is capable of producing many useful products. Therefore, aiming to analyse the processing conditions of injection molding, the corresponding mechanical properties of the compounds produced were examined. The results indicated that increasing the SP content will increase the toughness of the compound if compared to neat HDPE. It was concluded that the processing temperature and composition of SP will both influence the quality and mechanical behavior of the injected polymer compounds.


2015 ◽  
Vol 754-755 ◽  
pp. 210-214 ◽  
Author(s):  
Ragunathan Santiagoo ◽  
Sam Sung Ting ◽  
Hanafi Ismail ◽  
Mastura Jaafar

The compatibilizer effect of ENR-50 on the tensile properties and morphology of linear low density polyethylene (LLDPE)/ recycled acrylonitrile butadiene rubber (NBRr)/ rice husk powder (RHP) composites has been studied. The RHP size utilize in this work is 150 – 300 μm. LLDPE/NBRr/RHP composites were prepared by melt mixing technique at 180 °C for 9 minutes at 50 rpm rotor speed using heated two roll mill. The series of composites investigated were 100/0/5, 80/20/5, 70/30/5, 60/40/5, 50/50/5, and 40/60/5. The composites were analysed by using tensile test and morphology examination. The result showed that the tensile strength of composite was decreased with the increasing of recycled acrylonitrile butadiene rubber (NBRr) content while elongation at break (Eb) were increased. However, the tensile strength and elongation at break result for composites with ENR-50 as compatibilizer showed higher values. The morphological finding supports the tensile properties which indicate better interaction between the RHP filler and LLDPE/NBRr matrix in the presence of ENR-50 compatibilizer.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1821
Author(s):  
Ildar I. Salakhov ◽  
Nadim M. Shaidullin ◽  
Anatoly E. Chalykh ◽  
Mikhail A. Matsko ◽  
Alexey V. Shapagin ◽  
...  

Low-temperature properties of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and their blends were studied. The analyzed low-temperature mechanical properties involve the deformation resistance and impact strength characteristics. HDPE is a bimodal ethylene/1-hexene copolymer; LDPE is a branched ethylene homopolymer containing short-chain branches of different length; LLDPE is a binary ethylene/1-butene copolymer and an ethylene/1-butene/1-hexene terpolymer. The samples of copolymers and their blends were studied by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 13С NMR spectroscopy, and dynamic mechanical analysis (DMA) using testing machines equipped with a cryochamber. It is proposed that such parameters as “relative elongation at break at −45 °C” and “Izod impact strength at −40 °C” are used instead of the ductile-to-brittle transition temperature to assess frost resistance properties because these parameters are more sensitive to deformation and impact at subzero temperatures for HDPE. LLDPE is shown to exhibit higher relative elongation at break at −45 °C and Izod impact strength at −20 ÷ 60 °C compared to those of LDPE. LLDPE terpolymer added to HDPE (at a content ≥ 25 wt.%) simultaneously increases flow properties and improves tensile properties of the blend at −45 °C. Changes in low-temperature properties as a function of molecular weight, MWD, crystallinity, and branch content were determined for HDPE, LLDPE, and their blends. The DMA data prove the resulting dependences. The reported findings allow one to understand and predict mechanical properties in the HDPE–LLDPE systems at subzero temperatures.


2013 ◽  
Vol 734-737 ◽  
pp. 2191-2194
Author(s):  
Li Li Wu ◽  
Yuan Lian ◽  
Dan Liu ◽  
Hua Zheng ◽  
Dian Wu Huang

In this study, flame retardant microcapsules were synthesized using magnesium hydroxide as core materials, melamine resin as the shell material. The structure, diameters and thermal properties of prepared microcapsules were investigated by using FTIR, ELS, DSC and TGA. The effects of core/shell ratio on the properties of microcapsules were studied.Flame retardant materials of low-density polyethylene/magnesium hydroxide microcapsules were prepared.The tensile strength and elongation at break tests were performed to determine its mechanical property.Inflammability of the materials was also studied.The results showed the prepared magnesium hydroxide microcapsule shows good thermal stability and it has free compatibility with the polymer.The composites of HDPE/MH microcapsules have good performance.


Sign in / Sign up

Export Citation Format

Share Document