GreenBearings – Friction Behaviour of DLC-Coated Dry Running Deep Groove Ball Bearings

2015 ◽  
Vol 805 ◽  
pp. 147-153 ◽  
Author(s):  
Julia Kröner ◽  
Stephan Tremmel ◽  
Serge Kursawe ◽  
Yashar Musayev ◽  
Tim Hosenfeldt ◽  
...  

Due to the use of rolling bearings instead of plain bearings friction and wear are drastically reduced in all kind of machines. However, despite the high technical standard of modern rolling bearings there is still a significant potential for optimization. Preliminary Studies show a reduction of the friction torque of up to 44 % compared to conventional rolling bearings because of the use of tribological coatings in certain applications. Based on the millionfold usage of rolling bearings in all industrial fields the reduced lost energy adds up to a remarkable potential for energy savings. If friction and wear are lowered sufficiently, the use of conventional lubricants based on mineral oil can be successively decreased or even completely avoided. In the latter case, the socalled dry running of the rolling bearing, the energy consumption of machines and systems can additionally be reduced significantly. For example, pumping stations or compressed air units, which would be necessary for transporting or spraying the lubricants, can then be saved.This paper presents first results of DLC-coated deep groove ball bearings, which are tested in a four-bearing-test-rig under purely radial load with respect to their friction and wear behaviour.

Author(s):  
T Akagaki ◽  
M Nakamura ◽  
T Monzen ◽  
M Kawabata

Friction and wear behaviours of rolling bearing in contaminated oil containing white-fused alumina particles were studied. The friction and wear processes were monitored using wear debris analysis, such as ferrography and spectrometric oil analysis program, and vibration analysis. Test bearing was a deep groove ball bearing (6002P5); Wear debris and worn surfaces of the bearing components were observed with a scanning electron microscope (SEM). It was found that the friction coefficient in the contaminated oil became lower by about 0.001 than that in the new oil for the large contaminants. The results of wear debris analysis showed that the large contaminants caused the high wear rate in the bearing. Three types of wear debris were commonly observed: thread-like debris, cutting chip debris, and plate-like debris. On the basis of the SEM observation results of the worn surfaces, wear mechanisms of these wear debris were discussed. The results of vibration analysis showed that the probability density function of vibration waveform was normal distribution in both the new and contaminated oils. In the contaminated oil, it changed depending on the contaminant size and the runtime, i.e. the progress of wear in the bearing. The result of wear debris analysis was related to that of vibration analysis and discussed.


Author(s):  
ONKAR L. MAHAJAN ◽  
ABHAY A. UTPAT

In deep groove ball bearings contamination of lubricant grease by solid particles is one of the main reason for early bearing failure. To deal with such problem, it is fundamental not only the use of reliable techniques concerning detection of solid contamination but also the investigation of the effects of certain contaminant characteristics on bearing performance. Nowadays the techniques such as vibration measurements are being increasingly used for on-time monitoring of machinery performance. The present work investigates the effect of lubricant contamination by solid particles on the dynamic behavior of rolling bearings, in order to determine the trends in the amounts of vibration affected by contamination in the Grease and by the bearing wear itself. Experimental tests are performed with Deep-groove ball bearings. The Dolomite powder in three concentration levels and different particle sizes was used to contaminate the grease. Vibration signals were analyzed in terms of Root Mean Square (RMS) values and also in terms of defect frequencies.


Author(s):  
Zhiyong Zhang ◽  
Xiaoting Rui ◽  
Yushu Chen ◽  
Wenkai Dong ◽  
Lei Li

Ball bearings are essential parts of mechanical systems to support the rotors or constitute the revolute joints. The time-varying compliance (VC), bearing clearance and the Hertzian contact between the rolling elements and raceways are three fundamental nonlinear factors in a ball bearing, hence the ball bearing can be considered as a nonlinear system. The hysteresis and jumps induced by the nonlinearities of rolling bearings are typical phenomena of nonlinear vibrations in the rolling bearing-rotor systems. And the corresponding hysteretic impacts have direct effects on the cleavage derivative and fatigue life of the system components. Therefore, the behaviors of hysteresis and jumps are given full attentions and continued studies in the theoretical and engineering fields. Besides, many researchers have done a lot of calculations to depict the various characteristics of bifurcations and chaos in the rolling bearings and their rotor systems, but few researches have been addressed on the inherent mechanism of the typical intermittency vibrations in rolling bearings. With the aid of the HB-AFT (the harmonic balance method and the alternating frequency/time domain technique) method and Floquet theory, this paper will investigate deeply the resonant hysteresis and intermittency chaos in ball bearings.


2016 ◽  
Vol 856 ◽  
pp. 143-150 ◽  
Author(s):  
Julia Kröner ◽  
Serge Kursawe ◽  
Yashar Musayev ◽  
Stephan Tremmel

In many applications conventional lubricants which are based on mineral oils cannot be used because it is physically impossible or forbidden by regulations. Operating machine elements, such as rolling element bearings, under dry running conditions is highly demanding in regard to the materials that are being used. Applying thin films to steel substrates was identified as an approach to achieve wear resistant and low friction surfaces at reasonable cost. Furthermore, a substitution of mineral oil based lubricants by coatings is an achievement in terms of sustainability, environmental friendliness and conserving resources. In this paper wear and friction behaviour of deep groove ball bearings with two types of diamond-like-carbon (DLC)coating systems on the inner and the outer ring are investigated. The coating systems are modified hydrogenated amorphous carbon films, one with a metallic doping element (a‑C:H:Me) functional layer and one with a non-metallic (a‑C:H:X). As ball materials hardened steel (100Cr6) and ceramics (Si3N4) are considered. The tests have been conducted on a four-bearing-test-rig under radial load and a constant rotational speed. The combination of a‑C:H:Me with Si3N4 balls shows the best results in this sample by reaching the predefined time limit without exhibiting an increase in the friction torque trend.


2010 ◽  
Vol 26-28 ◽  
pp. 88-92 ◽  
Author(s):  
Xin Tao Xia ◽  
Tao Mei Lv ◽  
Fan Nian Meng

Based on the chaotic theory, the methods of the Lyapunov exponent and the box dimension were applied to evaluate the chaotic characteristic and the nonlinear dynamic performance of the rolling bearing friction torque. The time series were obtained via the experimental investigation on the friction torque of the rolling bearings under the condition of different rotational speeds. It is found that the rolling bearing friction torque is of a chaotic system because the maximum of Lyapunov exponents of its time series is greater than zero according to the chaotic theory. And the result shows that the mean of the box dimension of the friction torque increases with the rotational speed of the rolling bearing, revealing the new dynamic performance of the rolling bearing friction torque as a time series.


2010 ◽  
Vol 44-47 ◽  
pp. 1115-1119 ◽  
Author(s):  
Xin Tao Xia ◽  
Long Chen ◽  
Fan Nian Meng

The information entropy theory is applied to evaluate the uncertainty of the rolling bearing friction torque. The data series are obtained via the experimental investigation on the friction torque of the rolling bearings under the condition of different rotational speeds. And the result shows that the information entropy of the friction torque increases with the rotational speed of the rolling bearing, revealing the new dynamic performance of the rolling bearing friction torque as a data series.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
V. N. Patel ◽  
N. Tandon ◽  
R. K. Pandey

Rolling element bearings are used in many mechanical systems at the revolute joints for sustaining the dynamic loads. Thus, the reliable and efficient functioning of such systems critically depends on the good health of the employed rolling bearings. Hence, health monitoring of rolling bearings through their vibration responses is a vital issue. In this paper, an experimental investigation has been reported related to the vibration behaviours of healthy and locally defective deep groove ball bearings operating under dynamic radial load. The dynamic load on the test bearings has been applied using an electromechanical shaker. The vibration spectra of the healthy and defective deep groove ball bearings in time and frequency domains have been compared and discussed. Overall vibration increases in presence of local defects and dynamic radial load.


2020 ◽  
Vol 10 (4) ◽  
pp. 1477
Author(s):  
Nazli Acar ◽  
José M. Franco ◽  
Erik Kuhn ◽  
David E. P. Gonçalves ◽  
Jorge H. O. Seabra

The applications of biogenic lubricating greases to machine elements play important roles in the reduction of friction energy and minimizing wear in a tribological contact, as well as the prevention of environmental pollution. The aim of this work was to investigate completely biogenic lubricating greases from a tribological point of view. Model greases were examined using a ball on a disc tribometer at a constant normal force to investigate the friction and wear process according to Fleischer’s energetic wear model. Using the energy-based wear model, the friction and wear process could be interpreted as a cause–effect sequence. Moreover, the influence of the model grease composition on the friction and wear process was analyzed. In addition, rolling bearing tests were performed to investigate the tribological behaviors of some selected biogenic greases during real machine element contact. These tests allowed for the quantification of the friction torque behavior of the full bearing and the evaluation of the wear obtained through lubricant analysis procedures. This experimental work provides useful information regarding the influence that the composition of biogenic model greases has on friction and wear behaviors in a tribological contact.


Author(s):  
G. D. T. Carmichael ◽  
P. B. Davies

There is a need to extend the overall speed range of machine tool main spindle assemblies, but the conflicting requirements of adequate stiffness and lack of play at low speeds, and an acceptably low rate of heat generation at high speeds, are tending to limit the application of rolling bearings in machines of wide speed ranges. It has been recognized that the thermal distortion which occurs in assemblies has a significant influence on their performance, but little information is available on the proper selection of design parameters. An experimental investigation of an idealized assembly containing two back-to-back angular contact ball bearings is described, and the transient variation of friction torque, axial load sustained by the bearings, and other variables are presented. The transient thermal distortion of the assembly was analysed and its influence on the overall performance considered. The significance of these results in relation to the design of machine tools is suggested.


2010 ◽  
Vol 44-47 ◽  
pp. 1125-1129
Author(s):  
Xin Tao Xia ◽  
Long Chen ◽  
Fan Nian Meng

Based on the information poor system theory, the grey bootstrap method is employed to estimate the uncertainty of the rolling bearing friction torque. The data series are obtained via the experimental investigation of the friction torque of the rolling bearings under the condition of different rotational speeds. And the results show that the mean of the dynamic fluctuant range (MDFR) of the friction torque increases with the rotational speed of the rolling bearing, revealing the new dynamic performance of the rolling bearing friction torque as a data series.


Sign in / Sign up

Export Citation Format

Share Document